• Title/Summary/Keyword: re-regulation dam

Search Result 4, Processing Time 0.02 seconds

Channel Changes and Effect of Flow Pulses on Hydraulic Geometry Downstream of the Hapcheon Dam (합천댐 하류 하천지형 변화 예측 및 흐름파가 수리기하 변화에 미치는 영향)

  • Shin, Young-Ho;Julien, Pierre Y.
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.7
    • /
    • pp.579-589
    • /
    • 2009
  • Hwang River in South Korea, has experienced channel adjustments due to dam construction. Hapcheon main dam and re-regulation dam. The reach below the re-regulation dam (45 km long) changed in flow regime, channel width, bed material distribution, vegetation expansion, and island formation after dam construction. The re-regulation dam dramatically reduced annual peak flow from 654.7 $m^3$/s to 126.3 $m^3$/s and trapped the annual 591 thousand $m^3$ of sediment load formerly delivered from the upper watershed since the completion of the dam in 1989. An analysis of a time series of aerial photographs taken in 1982, 1993, and 2004 showed that non-vegetated active channel width narrowed an average of 152 m (47% of 1982) and non-vegetated active channel area decreased an average of 6.6 km2 (44% of 1982) between 1982 and 2004, with most narrowing and decreasing occurring after dam construction. The effects of daily pulses of water from peak hydropower generation and sudden sluice gate operations are investigated downstream of Hapcheon Dam in South Korea. The study reach is 45 km long from the Hapcheon re-regulation Dam to the confluence with the Nakdong River. An analysis of a time series of aerial photographs taken in 1982, 1993, and 2004 showed that the non-vegetated active channel width narrowed an average of 152 m (47% reduction since 1982). The non-vegetated active channel area also decreased an average of 6.6 $km^2$ (44% reduction since 1982) between 1982 and 2004, with most changes occurring after dam construction. The average median bed material size increased from 1.07 mm in 1983 to 5.72 mm in 2003, and the bed slope of the reach decreased from 0.000943 in 1983 to 0.000847 in 2003. The riverbed vertical degradation is approximately 2.6 m for a distance of 20 km below the re-regulation dam. It is expected from the result of the unsteady sediment transport numerical model (GSTAR-1D) steady simulations that the thalweg elevation will reach a stable condition around 2020. The model also confirms the theoretical prediction that sediment transport rates from daily pulses and flood peaks are 21 % and 15 % higher than their respective averages.

A Study on the Applicability of GSTAR-1D to the Riverbed-Level Variation in the Geum River (GSTAR-1D 모형의 금강 하상변동예측 적용성에 관한 연구)

  • Chung, Sung-Young;Park, Bong-Jin;Jung, Kwan-Sue
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1611-1615
    • /
    • 2006
  • The purpose of this study is to simulate the riverbed profile changes downstream of Daecheong re-regulation dam from 1988 to 2001, to evaluate the model's applicability and to predict a long-term riverbed-level variation between 2002 and 2017. As a result of simulation 14 sediment transport equations provided by GSTAR-1D, it was found that Acker's & White formula was the most stable relatively. The interval used to calculate its stability was 7 days for bankful discharge$(1,000m^2/s)$, 3 days for daily maximum flow$(4,273m^2/s)$, 1 day for hourly maximum flow$(7,605m^2/s)$ and minimum flow$(8.5m^2/s)$. The simulation results of river bed changes were evaluated and compared to its measure data from 1988 to 2001. It was showed that there was the degradation for a section between Daecheong re-regulation dam and Maepo water stage gage station due to bed-material, and the degradation for a reach between Maepo and Gongju water stage gage station due to massive aggregate collection. Also, as a result of simulating the river profile change for 2002 to 2017, it was predicted that the section between Daecheong re-regulation dam and Geumnam Bridge would remain as the present profile and the reach between Maepo and Gongju water stage gage station would have some degradations in several parts, which would be stable as a whole unless it was due to artificial river profile change.

  • PDF

Velocity Measurement of Stream Water Surface Using Microwave (전자파를 이용한 하천수 표면유속 측정)

  • Lee, Sang-Ho;Lee, Han-Gu;Kim, U-Gu
    • Water for future
    • /
    • v.28 no.6
    • /
    • pp.183-191
    • /
    • 1995
  • Applying microwave, a velocity measurement system has been developed in order to measure the velocity of stream water surface. It's main purpose is the measurement for high velocity of flood water. It is under the developing stage of experimental measurement system. The microwave surface velocity meter uses Doppler effects of microwave. It consists of a radio frequency(RF) part and that of signal processing. Thr RF part has the function of microwave oscillation, reception of reflected wave, and determination of Doppler frequency, etc. Signal processing designates amplification, fast Fourier transform, etx. Various measuring experiments were performed at bridges and a spillway of Taechong re-regulation dam with the microwave velocity meter. Verification test was also made through water tank of ship model test at Research Institute of Ships and Ocean Engineering. It shows 4% error inherent in A/D converter and additional several percentage errors from measurement circumstance. The measuring ranges are from 0.5 to 3.5 m/s. The result shows good linear relationship between carriage velocity and measured velocity, thus proves usefulness as a measuring instrument for flood water velocity. The instrument requires overall re-engineering procedure and number of data should be accumulated and analyzed to treat wind effects and random fluctuations of water surface.

  • PDF

Estimation of Reservoir Discharge to Support TMDL Management in the Geum River Basin (금강수계 오염총량관리를 고려한 저수지 방류량산정)

  • Noh Joon-Woo;Kim Soo-Jun;Kim Jeong-Kon;Koh Ick-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.7 s.168
    • /
    • pp.627-636
    • /
    • 2006
  • This study estimates adequate discharge to meet the specified target water quality concentration using the pollutant load of the Geum river basin given in TMDL (Total Maximum Daily Load) report. During the 1st phase, BOD is chosen as a target water quality constituent under regulation of the Ministry of Environment in Korea. BOD, TN, and TP loads estimated based on the TMDL and provincial zones were re-distributed for 10 major tributaries, and the remaining areas along the main river are classified as 15 incremental flow areas. Water quality modeling was conducted using Qual2E for the low flow period of a year (i.e. $March{\sim}April$). The results of the model simulation showed that about 30 cms from the Daechung dam would be sufficient to satisfy the target water quality in the Geum river downstream of the Daechung multipurpose Dam.