• Title/Summary/Keyword: re-entry

Search Result 138, Processing Time 0.029 seconds

Re-entry Experiences to Socialization of Female Ex-Offender : Based on Grounded Theory Methodology (여성출소자의 사회재진입 경험에 관한 근거이론 연구)

  • Lee, A-Reum;Kim, Mi-Hyun;Lee, Dong-Hun
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.5
    • /
    • pp.388-409
    • /
    • 2017
  • This study was to explore experiences of Female Ex-offender's re-entry process to socialization. For this, 9 female ex-offenders who receive housing support by the Korea Rehabilitation Agency were interviewed and the Strauss and Corbin's ground theory is used to approach to the data. In open coding, 88 concepts, 33 subcategories, and 15categories emerged from the data. In axial coding, central phenomenon were 'indulge in self pity', 'being isolated female ex-offender'. Intervention condition was 'human cooperation system'. Strategies were 'increase the receptiveness', 'establish the foundation'. Consequences were 'finding the stability in the life', 'changing the life direction'. In selective coding, main theme was 'overcome social stigma through changing life-direction and acclimate to society', and four phases were derived from the data. Based upon this results outcome, need of female ex-offender in the process of social transition and their experience were discussed.

Simulation of Time-Delay Based Path-Tracking Control of Reusable Launch Vehicle (시간지연기법을 적용한 재사용발사체 유도제어 시뮬레이션)

  • Cho, Woosung;Lee, HyeongJin;Lee, Yeol;Ko, Sangho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.8
    • /
    • pp.627-636
    • /
    • 2021
  • This paper deals with a study for the guidance control of reusable launch vehicle. For this purpose, modeling of the equation of motion of a reusable launch vehicle with 6 degrees of freedom was performed. With this model, an optimal re-entry path was created and a path-following guidance control simulation was performed to follow the optimal re-entry path. For the design of the path-following guidance controller, the attitude controller applying a time-delay technique that is resistant to modeling uncertainty, disturbance and failure. And the nonlinear path-following guidance law were used. Guidance control simulation using a classical PD controller was performed and compared with the guidance control simulation of a reusable launch vehicle applying a time delay technique.

Evaluation of the feasibility of bony window repositioning without using a barrier membrane in sinus lateral approach (상악동측방접근법시 차폐막을 사용하지 않는 골창재위치술의 유용성 평가)

  • Jeon, Seung-Hwan;Cho, Yong-Seok;Lee, Byung-Ha;Im, Tae-Yun;Hwang, Kyung-Gyun;Park, Chang-Joo
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.37 no.2
    • /
    • pp.122-126
    • /
    • 2011
  • Introduction: In the lateral window approach for a maxillary sinus bone graft, there has been considerable controversy regarding the placement of a barrier membrane over the osteotomy site. In particular, when there is no damage to the Schneiderian membrane, clinicians should decide whether to use a barrier membrane or not, considering the benefits and costs. This study presents the clinical cases to demonstrate that only repositioning the detached window can lead to satisfactory bony healing of the grafted material without using a barrier membrane in the lateral approach for a maxillary sinus bone graft. Materials and Methods: Five consecutive patients were treated with the same surgical procedures. After performing the antrostomy on the lateral maxillary wall using a round carbide bur and diamond bur, the bony window was detached by a gentle levering action. After confirming no perforation of the Schneiderian membrane, the grafting procedure was carried out the detached window of the lateral maxillary wall was repositioned over the grafted material without using a barrier membrane. A gross examination was carried out at the postoperative 6 month re-entry, and the the preoperative and postoperative dental computed tomography (CT) at re-entry were compared. Results: All the procedures in the 5 patients went on to uneventful healing with no complications associated with the bone graft. Satisfactory bone regeneration without the interference of fibrous tissue on the gap between the repositioned window and lateral wall of the maxillary sinus was observed in the postoperative 6 month re-entry. The CT findings at re-entry revealed the, reconstruction of the external cortical plate including repositioned bony window. In addition, the loss of the discontinuity of the lateral maxillary wall was confirmed. Conclusion: This preliminary report showed that the detached window, which was just repositioned on the grafted material, could function as a barrier membrane in the lateral approach for a maxillary sinus bone graft. Therefore additional morphometric and histologic studies will be needed.

Reference Trajectory Design for Atmosphere Re-entry of Transportation Mechanical Structure (수송기계구조물의 대기권 재진입 기준궤도 설계)

  • Park, J.H.;Eom, W.S.
    • Journal of Power System Engineering
    • /
    • v.7 no.4
    • /
    • pp.67-73
    • /
    • 2003
  • The entry guidance design involves trajectory optimization and generation of a drag acceleration profile as the satisfaction of trajectory conditions during the entry flight. The reference trajectory is parameterized and optimized as piecewise linear functions of the velocity. A regularization technique is employed to achieve desired properties of the optimal drag profile. The regularized problem has smoothness properties and the minimization of performance index then prevents the drag acceleration from varying too fast, thus eliminating discontinuities. This paper shows the trajectory control using the simple control law as well as the information of reference drag acceleration.

  • PDF

Design and Development Status of a Thermal Protection System for a Spaceplane (우주비행기 열보호 시스템의 설계 및 개발 현황)

  • Yoon, Yong-Sik;Choi, Gi-Hyuk
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.3
    • /
    • pp.79-85
    • /
    • 2018
  • The demand for the development of atmospheric entry vehicles, dealing with reentry and solar-system planet exploration, is increasing. Generally, atmospheric drag and heating accompany the entry into atmospheric air. Accordingly, the selection of the thermal protection materials and the design and application of the thermal protection system are very important. In this paper, the atmospheric entry environment and the type and characteristics of the thermal protection materials are discussed. The design and application status of a thermal protection system for spaceplanes are described.

Non-linear aero-elastic response of a multi-layer TPS

  • Pasolini, P.;Dowell, E.H.;Rosa, S. De;Franco, F.;Savino, R.
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.4
    • /
    • pp.449-465
    • /
    • 2017
  • The aim of the present work is to present a computational study of the non-linear aero-elastic behavior of a multi-layered Thermal Protection System (TPS). The severity of atmospheric re-entry conditions is due to the combination of high temperatures, high pressures and high velocities, and thus the aero-elastic behavior of flexible structures can be difficult to assess. In order to validate the specific computational model and the overall strategy for structural and aerodynamics analyses of flexible structures, the simplified TPS sample tested in the 8' High Temperature Tunnel (HTT) at NASA LaRC has been selected as a baseline for the validation of the present work. The von $K{\acute{a}}rm{\acute{a}}n^{\prime}s$ three dimensional large deflection theory for the structure and a hybrid Raleigh-Ritz-Galerkin approach, combined with the first order Piston Theory to describe the aerodynamic flow, have been used to derive the equations of motion. The paper shows that a good description of the physical behavior of the fabric is possible with the proposed approach. The model is further applied to investigate structural and aero-elastic influence of the number of the layers and the stitching pattern.

Photobiomodulation therapy activates YAP and triggers proliferation and dedifferentiation of Müller glia in mammalian retina

  • Seo-Yeon Kim;Myung-Jun Song;In-Beom Kim;Tae Kwan Park;Jungmook Lyu
    • BMB Reports
    • /
    • v.56 no.9
    • /
    • pp.502-507
    • /
    • 2023
  • Photobiomodulation therapy has been proposed as a promising therapeutic approach for retinal degenerative diseases. However, its effect on the regenerative capacity in mammalian retina and its intracellular signalling mechanisms remain unknown. Here, we show that photobiomodulation with 670 nm light stimulates Müller glia cell cycle re-entry and dedifferentiation into a progenitor-like state in both the uninjured and injured retina. We also find that 670 nm light treatment inhibits the Hippo pathway, which is activated in Müller glia following NaIO3-induced retinal injury. YAP, a major downstream effector of the Hippo signalling pathway was translocated into the nucleus of Müller glia along with YAP dephosphorylation in retina treated with 670 nm light. Deficiency of YAP attenuated Müller glia cell cycle re-entry and dedifferentiation. Our data reveal that the Hippo-YAP signalling pathway is associated with the photostimulatory effect on regenerative response in mammalian retina, and suggest a potential therapeutic strategy for retinal degenerative diseases.

Flow of a low concentration polyacrylamide fluid solution in a channel with a flat plate obstruction at the entry

  • Kabir, M.A.;Khan, M.M.K.;Rasul, M.G.
    • Korea-Australia Rheology Journal
    • /
    • v.16 no.2
    • /
    • pp.63-73
    • /
    • 2004
  • Flow in a channel with an obstruction at the entry can be reverse, stagnant or forward depending on the position of the obstruction. These flow phenomena have potential applications in the control of energy and various flows in process engineering. Parameters that affect this flow inside and around the test channel are the gap (g) between the obstruction geometry and the test channel, the Reynolds number (Re) and the length (L) of the test channel. The influence of these parameters on the flow behavior was investigated using a flat plate obstruction at the entry of the channel. A low concentration polyacrylamide solution (0.018% by weight) showing a powerlaw fluid behavior was used as the fluid in this investigation. The flow phenomena were investigated by the velocity measurement and the flow visualization and their results were compared with numerical simulation. These results of low concentration polyacrylamide solution are also compared with the results of water published elsewhere (Kabir et al., 2003). The maximum reverse flow inside the test channel observed was 20% - 30% of the outside test channel velocity at a g/w (gap to width) ratio of 1 for Reynolds numbers of 1000 to 3500. The influence of the test channel length (L) and the Reynolds number (Re) on the velocity ratio ($V_i$/$V_o$: inside velocity/outside velocity in the test channel) are also presented and discussed here.