연기와 같은 유체의 모습을 영화나 애니메이션에서의 특수 효과에 활용하기 위해는 연기를 사실적으로 모델링하는 과정과 모델링 된 연기 내부에서의 빛의 흐름이 잘 반영된 렌더링 과정이 필요하다. 컴퓨터 그래픽스 분야에서는 연기 모델링의 사실성을 살리기 위해 물리 기반의 유체 시뮬레이션 기법을 많이 차용하고 있는데, 그동안 시뮬레이션 기법으로 주로 연구되어 온, 격자 기반의 Euler 방법과는 근본적으로 다른, 파티클 기반의 Lagrange 방법이 시뮬레이션 단계에서 얻을 수 있는 장점 때문에 최근 관심이 높아지고 있다. 연기 렌더링은 연기 모델링 방법에 종속적일 수밖에 없으므로, 결과적으로 격자 기반의 시뮬레이션 결과에 대한 렌더링 방법은 많이 연구되고 있는 데 비해, 파티클 형태로 산출된 연기 데이터에 대하여 사실적인 영상을 생성해주는 랜더링 기술에 대한 연구는 아직 부족한 상황이다. 이에, 본 논문에서는 Lagrange 기법을 적용하여 생성한 파티클 집합 형태의 연기 시뮬레이션 데이터를 사실적으로 렌더링하기 위해, 전역 조영을 위한 최신 랜더링 기술인 포톤 매핑 기법을 파티클 데이터에 맞게 변형 및 확장한 파티클맵 기법을 소개하고, 개선된 파티클템 기법을 제시하여, 기존 연구와의 차이점을 보여준다. 또한 렌더링 과정에서 효율성을 높이기 위해 볼륨 렌더링 방정식의 다중 산란 항을 미리 계산하는 광도맵이라는 방법을 제시한다.
ZnGa₂Se₄단결정 박막은 수평 전기로에서 함성한 ZnGa₂Se₄다결정을 증발원으로하여, hot wall epitaxy(HWE) 방법으로 증발원과 기판(반절연성-GaAs(100))의 온도를 각각 610℃, 450℃로 고정하여 단결정 박막을 성장하였다. 10 K에서 측정한 광발광 exciton 스펙트럼과 이중결정 X-선 요동곡선(DCRC)의 반치폭(FWHM)을 분석하여 단결정 박막의 최적 성장 조건을 얻었다. Hall효과는 van der Pauw방법에 의해 측정되었으며, 온도에 의존하는 운반자 농도와 이동도는 293 K에서 각각 9.63×10/sup 17/㎤, 296 ㎠/V·s였다. 광전류 봉우리의 10 K에서 단파장대의 가전자대 갈라짐(splitting)에의해서 측정된 Δcr (crystal field splitting)은 183.2meV, △so (spin orbit splitting)는 251.9meV였다. 10K의 광발광 측정으로부터 고품질의 결정에서 볼 수 있는 free exciton 과 매우 강한 세기의 중성 받개 bound exciton등의 피크가 관찰되었다. 이때 중성 받개 bound exciton등의 피크가 관찰되었다. 이때 중성 반개 bound excition의 반치폭과 결합에너지는 각각 11meV와 24.4meV였다. 또한 Hanes rule에 의해 구한 불순물의 활성화 에너지는 122meV였다.
최근 캐나다 퀘벡주 운가바 지역의 메사맥스 노스웨스트광상에서 발견된 신종광물인 날드렛타이트(naldrettite)의 광물학적 성질 중 이 광물의 이상화학성분이 $Pd_2Sb$인 것으로 발표되었다. 따라서 이 연구에서는 순수한 $Pd_2Sb$성분의 화합물을 합성한 후 천연 및 합성 물질간의 광학적 성질, 화학조성, 결정구조, 미경도 등의 자료를 비교하여 두 물질의 일치성 여부를 확인하고자 하였다. 합성 $Pd_2Sb$는 공기 및 오일 속에서 밝은 백색에 옅은 노란색이 곁들여 있는 것으로 관찰되며, 복반사가 미약하게 관찰된다. 이방성이 강하며, 회갈색으로부터 녹청색으로 변한다. 미경도 측정값은 $VHN_{100}=293(242-322)$이다. 화학성분은 Pd가 $63.7\~64.3wt.\%,\;Sb\;가\;36.4\~36.8\;wt.\%$로 매우 일정하다. 합성 $Pd_2Sb$의 결정구조는 사방정계의 공간군 $Cmc2_1$에 속하며, $510^{\circ}C$에서 합성한 물질의 경우 단위포 상수는 a=3.366(1), b=17.523(3), c=6.929(2) ${\AA}$이다. 이와 같은 합성 $Pd_2Sb$의 광물학적 자료는 날드렛타이트의 자료와 잘 일치하며, 이로부터 naldrettite가 합성 $Pd_2Sb$의 천연산 광물임을 알 수 있다.
단결정상을 가지는 CaZrO3 : Eu3+ 형광체를 스컬용융법으로 합성하였다. 합성된 형광체의 결정구조, 형태 및 광학적 특성은 XRD, SEM, UV 형광반응 및 PL을 분석하였다. 출발 원료는 CaO : ZrO2 : Eu2O3를 0.962 : 1.013 : 0.025 mol%로 하여 냉각도가니에 충진하였다. 냉각도가니는 내부 직경 120 mm, 높이 150 mm이며, 혼합된 파우더 3 kg은 3.4 MHz의 출력 주파수로 1시간 이내에 완전히 용융되어 2시간 동안 유지시킨 후 자연냉각 시켰다. XRD 측정에서는 다른 결정상은 측정되지 않았으며 페로브스카이트 구조의 정방정계로 분석되었다. 합성된 형광체는 UV 광에 의해 여기 될 수 있고 방출 스펙트럼 결과는 615 nm에서 자기 쌍극자 전이 5D0→7F2로 인해 CaZrO3 : Eu3+의 밝은 적색 발광이 우세하였다.
희토류 원소를 기반으로한 알루미늄산 형광체에 담지된 산화티탄은 졸겔방법 으로 제조되었다. 이렇게 제조된 산화티탄 나노입자의 재료물성을 분석하기 위해 XRD, FT-IR, DRS UV-Vis, TEM 측정을 실시하였다. 형광체에 담지된 산화티탄 입자의 소결 전후의 XRD분석결과는 600도 이상의 온도에서 아나타제에서 루틸로 상변화가 일어나지 않았다. 600도 이상의 온도에서 지속적인(장시간) 열처리 후에도 형광체에 담지된 산화티탄이 결정화도가 높은 아나타제로 존재 하는 것은 형광체 지지체와 담지된 산화티탄의 서로 다른 결정입계에 의하여 결정성장과 상변화에 필요한 치밀화가 억제되기 때문으로 판단된다. DRS측정결과 형광체에 담지된 산화티탄은 산화티탄이 없는 형광체에 비하여 보다 긴 장파로 쉬프트한 것은 밴드갭 에너지의 환원을 나타낸다. 이러한 형광체에 담지된 산화티탄의 FT-IR 스펙트럼은 피크의 위치가 더 높은 파수로 이동하였다. 이것은 산화티탄 입자와 지지체 사이의 공유결합이 관계하기 때문 이라 판단된다. TEM 이미지는 형광체 지지체에 다른 입자 크기로 담지되어 있는 산화티탄의 분산, 결정화 및 입자 형상을 나타낸다.
전구체로서 알콕사이드[Tetraethyl orthosilicate (TEOS), Titanium (IV) isopropoxide (TiP)]를 사용하여 졸-겔 방법으로 전기방사에 적합한 졸을 제조한 후, $(1-x)SiO_2-(x)TiO_2$계 복합 나노섬유를 제조하였다. 제조된 광활성 무기나노섬유의 표면 및 구조적 특성은 X-선회절분석(XRD), 주사전자현미경(SEM), 투과전자현미경(TEM), 열중량분석 및 미분주사칼로리미터분석 (TGA-DSC), 적외선분광분석((FT-IR)을 통하여 확인하였다. $(1-x)SiO_2-(x)TiO_2$계에서 $TiO_2$ 양이 증가하면 전기방사된 복합섬유직경은 증가하였으며, 저온에서 안정한 아나타제 $TiO_2$ 결정에서 루타일로의 상전이는 $1000^{\circ}C$에서의 열처리 후에도 고루 분산되어 있는 $SiO_2$로 인해 $0.6SiO_2-0.4TiO_2$계까지는 아나타제상으로 존재하였다. $SiO_2-TiO_2$계 복합체 나노섬유의 광활성은 메틸렌블루 광분해 실험 및 UV-vis/DRS 분석을 통해 자외선 영역에서 나타남을 확인하였다.
최근 분극 특성이 상이한 무분극 GaN 에피성장에 관한 심도 있는 연구와 함께 전자-전공 캐리어의 주입 및 캐리어의 거동, 방출되는 편광 특성 및 다양한 물리적 특성들에 대해 보고되고 있으며, 광학적 특성 및 물리적 특성의 확보를 위한 많은 연구가 활발히 진행 중이다 [1]. GaN의 ohmic 접촉(ohmic contact)의 형성은 발광 다이오드(light emitting diode), 레이저 다이오드(Laser), 태양전지(solar cell)와 같은 고신뢰도, 고효율 광전자 소자를 제조하기 위해서는 매우 중요하다 [2]. 그러나 이와 함께 병행 되어야 할 무분극 p-GaN 의 ohmic contact에 관한 연구는 많이 이루어지고 있지 않는 실정이다. 따라서 본 논문에서는 r-plane 사파이어 기판 상에 성장된 p-GaN에서의 ohmic 접촉 형성 연구를 위하여 Ni/Au ohmic 전극의 접촉저항 특성을 연구하였다. 본 실험에서는 성장된 a-plane GaN의 Hole농도가 $3.09{\times}1017cm3$ 인 시편을 사용하였다. E-beam evaporation 장비를 이용하여 Ni/Au를 각각 20 nm 그리고80 nm 증착 하였으며 비접촉저항을 측정하기 위해 Circle-Transfer Length Method (C-TLM) 패턴을 사용하였다. 샘플은 RTA (Rapid Thermal Annealing)를 사용하여 $300^{\circ}C$에서 $700^{\circ}C$까지 온도를 변화시키며 전기적 특성을 비교하여 그림 1(a) 나타내었다. 그림에서 알 수 있듯이 $400^{\circ}C$에서 가장 낮은 비접촉저항 값인 $6.95{\times}10-3{\Omega}cm2$를 얻을 수 있음을 발견하였다. 이 때의 I-V curve 도 그림1(b)에 나타낸 바와 같이 열처리에 의해 크게 향상됨을 알 수 있다. 그러나, $500^{\circ}C$ 이상 온도를 증가시키면 다시 비접촉 저항이 증가하는 것을 관찰하였다. XRD (x-Ray Diffraction) 분석을 통하여 $400^{\circ}C$ 이상열처리 온도가 증가하면 금속 표면에 $NiO_2$가 형성되며, 이에 따라 오믹특성이 저하 된다고 사료된다. 또한 $Ni_3N$의 존재를 확인 하였으며 이는 nonpolar surface의 특성으로 인해 nitrogen out diffusion 현상이 동시에 발생하여 계면에는 dopant로 작용하는 질소 공공을 남기고 표면에 $Ni_3N$을 형성하여 ohmic contact의 특성이 저하되기 때문인 것으로 사료된다.
ITO 기판위에 음극전착법으로 $\alpha$-Fe$_2$O$_3$막을 제조하였다 $\alpha$-Fe$_2$O$_3$막의 특성을 향상시키기 위하여 전착시간, 전착전압, 열처리 조건을 변화시켜 그 특성을 조사하였다. 전착된 전극에 100 mW/$ extrm{cm}^2$의 백색광을 조사하여 광전류밀도를 측정하고, XRD, SEM, UV-visible spectrophotometer를 통해 제조 조건에 따른 특성변화를 관찰하였다. 그리고 100 mW/$\textrm{cm}^2$의 백색광하 0 bais에서의 전극의 안정성을 검토하였다. 인가전압 -2V, 인가시간 180s 전착조건에서 얻어진 막을 50$0^{\circ}C$에서 1시간 열처리하여 순수한 $\alpha$-Fe$_2$O$_3$막이 형성되었으며, 이 조건에서 얻어진 막에서 834$\mu$A/$\textrm{cm}^2$의 가장 큰 광전류밀도가 측정되었다.
당밀(糖密)을 원료(原料)로 하여 발효법(醱酵法)으로 구르타민산(酸)소다를 제조(製造)할 때 부생(副生)하는 잔사(殘渣)를 가공(加工)하여 만든 구르타민산잔사가공비료(酸殘渣加工肥料) 시제품(試製品)에 대(對)하여 그 성질(性質)을 조사(調査)하고 그 비효를 요소(尿素), 퇴비(堆肥) 및 미강(米糠)과 대비(對比)해 옥수수 재배시험(栽培試驗)을 통(通)하여 검토(檢討)했든바 그 결과(結果)를 요약(要約)하면 아래와 같다. 1) 공시(供試) 구르타민산잔사가공물(酸殘渣加工物)은 유안(硫安), 염안(鹽安) 및 종류미상(種類未詳)의 복염등(複鹽等)의 무기물(無機物)과 수용성(水溶性) 아미노산류(酸類) 및 불용성(不溶性) 탄소화합물(炭素化合物)의 혼합물(混合物)임이 밝혀졌다. 2) 이 물질(物質)에 함유(含有)된 속효성N비료부분(肥料部分)의 효과는 요소(尿素)와 대등(對等)하다. 3) 이 물질(物質)에 함유(含有)된 유기물(有機物)은 옥수수의 수량(收量)에 미친 효과면에서 퇴비(堆肥)나 미강(米糠)과 대등(對等)한것 같다. 4) 이 물질(物質)의 시용(施用)은 옥수수의 양분흡수(養分吸收)나 기타(基他) 생리작용(生理作用)에 특이성(特異性)있는 해(害)를 미치지 않았다. 5) 이 물질(物質)에 함유(含有)된 유기물(有機物)이 토양중(土壤中) 철(鐵)의 유효화에 미치는 영향(影響)이 타유기물(他有機物)과 상이(相異)할 가능성(可能性)이 있음을 논(論)했다. 6) 이 물질(物質)의 시용(施用)은 토양(土壤)을 산성화(酸性化) 시키는 경향(傾向)이 뚜렷하며 토양중(土壤中) 가급태유황(可給態硫黃)과 토양유기물함량(土壤有機物含量)을 높이는 경향(傾向)이 있었다.
The research and development of hybrid electric vehicle (HEV), plug-in hybrid electric vehicle (PHEV) and electric vehicle (EV) are intensified due to the energy crisis and environmental concerns. In order to meet the challenging requirements of powering HEV, PHEV and EV, the current lithium battery technology needs to be significantly improved in terms of the cost, safety, power and energy density, as well as the calendar and cycle life. One new technology being developed is the utilization of composite cathode by mixing two different types of insertion compounds [e.g., spinel $LiMn_2O_4$ and layered $LiMO_2$ (M=Ni, Co, and Mn)]. Recently, some studies on mixing two different types of cathode materials to make a composite cathode have been reported, which were aimed at reducing cost and improving self-discharge. Numata et al. reported that when stored in a sealed can together with electrolyte at $80^{\circ}C$ for 10 days, the concentrations of both HF and $Mn^{2+}$ were lower in the can containing $LiMn_2O_4$ blended with $LiNi_{0.8}Co_{0.2}O_2$ than that containing $LiMn_2O_4$ only. That reports clearly showed that this blending technique can prevent the decline in capacity caused by cycling or storage at elevated temperatures. However, not much work has been reported on the charge-discharge characteristics and related structural phase transitions for these composite cathodes. In this presentation, we will report our in situ x-ray diffraction studies on this mixed composite cathode material during charge-discharge cycling. The mixed cathodes were incorporated into in situ XRD cells with a Li foil anode, a Celgard separator, and a 1M $LiPF_6$ electrolyte in a 1 : 1 EC : DMC solvent (LP 30 from EM Industries, Inc.). For in situ XRD cell, Mylar windows were used as has been described in detail elsewhere. All of these in situ XRD spectra were collected on beam line X18A at National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory using two different detectors. One is a conventional scintillation detector with data collection at 0.02 degree in two theta angle for each step. The other is a wide angle position sensitive detector (PSD). The wavelengths used were 1.1950 ${\AA}$ for the scintillation detector and 0.9999 A for the PSD. The newly installed PSD at beam line X18A of NSLS can collect XRD patterns as short as a few minutes covering $90^{\circ}$ of two theta angles simultaneously with good signal to noise ratio. It significantly reduced the data collection time for each scan, giving us a great advantage in studying the phase transition in real time. The two theta angles of all the XRD spectra presented in this paper have been recalculated and converted to corresponding angles for ${\lambda}=1.54\;{\AA}$, which is the wavelength of conventional x-ray tube source with Cu-$k{\alpha}$ radiation, for easy comparison with data in other literatures. The structural changes of the composite cathode made by mixing spinel $LiMn_2O_4$ and layered $Li-Ni_{1/3}Co_{1/3}Mn_{1/3}O_2$ in 1 : 1 wt% in both Li-half and Li-ion cells during charge/discharge are studied by in situ XRD. During the first charge up to ~5.2 V vs. $Li/Li^+$, the in situ XRD spectra for the composite cathode in the Li-half cell track the structural changes of each component. At the early stage of charge, the lithium extraction takes place in the $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ component only. When the cell voltage reaches at ~4.0 V vs. $Li/Li^+$, lithium extraction from the spinel $LiMn_2O_4$ component starts and becomes the major contributor for the cell capacity due to the higher rate capability of $LiMn_2O_4$. When the voltage passed 4.3 V, the major structural changes are from the $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ component, while the $LiMn_2O_4$ component is almost unchanged. In the Li-ion cell using a MCMB anode and a composite cathode cycled between 2.5 V and 4.2 V, the structural changes are dominated by the spinel $LiMn_2O_4$ component, with much less changes in the layered $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ component, comparing with the Li-half cell results. These results give us valuable information about the structural changes relating to the contributions of each individual component to the cell capacity at certain charge/discharge state, which are helpful in designing and optimizing the composite cathode using spinel- and layered-type materials for Li-ion battery research. More detailed discussion will be presented at the meeting.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.