• Title/Summary/Keyword: ratio of water loss

Search Result 438, Processing Time 0.025 seconds

Estimation of Water Loss in Irrigation Canals through Field Measurement (현장 측정을 통한 관개용수로의 손실량 추정)

  • Lee, Yong-Jig;Kim, Phil-Shik;Kim, Sun-Joo;Keun, Jee-Yong;Joo, Uk-Jong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.50 no.1
    • /
    • pp.13-21
    • /
    • 2008
  • Water losses in irrigation canals are mainly estimated as the sum of conveyance and delivery water loss. The losses occur via the evaporation, infiltration, gate operation and water distribution processing. Recently, the study regarding these water losses are not satisfactory enough, also delivery water loss has not been mainly considered on field design. The objective of this study is to investigate and analyze the volume of water loss in irrigation canals considering condition of actual farm land. A field measurement was performed at four research sites, which are managed by Korea Rural Community & Agriculture Corporation, to evaluate conveyance and delivery water loss for 2 years. The measurement was performed by canal type, size and designed flow using the inflow-outflow method at a major points such as start and end of each canal, derivation point of canal and inlet of paddy fields. Results of this study showed that water loss ratio in lateral canals was bigger than that of main canal unlike current design standard and the loss decrease as flow increase. The total of water loss ratio including conveyance and delivery water loss in several irrigation canals ranged between 33.25 and 45.0%.

The Estimation of Compacted State on Sea Dike Embankment with the Interrelationships Between the Hydraulic Head Loss Rate, the Hydraulic Conductivity and the Void Ratio (수두손실률, 투수계수 및 공극비의 상호관계를 통한 제체의 다짐상태 평가)

  • Eam, Sung Hoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.1
    • /
    • pp.11-23
    • /
    • 2015
  • In this study the laboratory test for hydraulic conductivity and the seepage analysis with finite element method on measurement section of sea dike embankment were performed for the purpose of estimating the relative density of embankment from the measured pore water pressures, and both results of the test and the analysis were coupled with the method of estimating seepage blocking state with the hydraulic head loss rate in sea dike embankment. The relationship of void ratio vs hydraulic head loss rate was obtained by setting hydraulic conductivity as common ordinate on the relationships between the void ratio and the hydraulic conductivity and between the hydraulic conductivity and the hydraulic head loss rate. The void ratio on the segment between measuring points was calculated from the coupled relationship of the void ratio vs the hydraulic conductivity. The allowable upper and lower limits of hydraulic head loss rate and those of void ratio on the safety were generated from the coupled relationship between the laboratory compaction test and the sedimentation test. Current hydraulic head loss rate and void ratio were evaluated in the allowable range between upper and lower limits.

A Study on the Determination of Loss Ratio in Dredged Soils (준설토의 유실율 결정에 관한 연구)

  • 김석열;김승욱;노종구
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.606-611
    • /
    • 1999
  • Recently , the hydraulic fill method is commonly used in many reclamation projects due to lack of fill materialss. The method of hydraulic fill i recalmation is executed by transporting the mixture of water -soil particles into a relcaimed land through dredging pipes, then the dredged soil particels settle down in thewater orflow over an out flow weir with the water. The amount of the volume reductions of dredged soil is considered the sum of the overall settlement by descication shrinkage and self-weigth consolidation and the loss of soil particles flow over a weir. In the present study, hydrometer analysis was performed with the soil samples obtained bofore and after dredging to estimate the amount of soil particles residual at reclaimed area and the loss of soil particles , then it was suggested the method of determining the loss ratio of dredged soils from the tests results. The hydrometer analysis of in-situ soil samples showed that the loss ratio of dredged soils is lowest at the nearest point to dredge pipe and highest at the nearest point of out flow weir.

  • PDF

SOIL EROSION MODELING USING RUSLE AND GIS ON THE IMHA WATERSHED

  • Kim, Hyeon-Sik;Julien Pierre Y.
    • Water Engineering Research
    • /
    • v.7 no.1
    • /
    • pp.29-41
    • /
    • 2006
  • The Imha watershed is vulnerable to severe erosion due to the topographical characteristics such as mountainous steep slopes. Sediment inflow from upland area has also deteriorated the water quality and caused negative effects on the aquatic ecosystem of the Imha reservoir. The Imha reservoir was affected by sediment-laden density currents during the typhoon 'Maemi' in 2003. The RUSLE model was combined with GIS techniques to analyze the mean annual erosion losses and the soil losses caused by typhoon 'Maemi'. The model is used to evaluate the spatial distribution of soil loss rates under different land uses. The mean annual soil loss rate and soil losses caused by typhoon 'Maemi' were predicted as 3,450 tons/km2/year and 2,920 ton/km2/'Maemi', respectively. The sediment delivery ratio was determined to be about 25% from the mean annual soil loss rate and the surveyed sediment deposits in the Imha reservoir in 1997. The trap efficiency of the Imha reservoir was calculated using the methods of Julien, Brown, Brune, and Churchill and ranges from 96% to 99%.

  • PDF

Analysis of Runoff Characteristics in the Geum River Basin using Watershed Management Model (유역관리모형을 이용한 금강유역 유출특성 해석)

  • Ryoo, Kyong-Sik;Hwang, Man-Ha;Maeng, Seung-Jin;Lee, Sang-Jin
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.4
    • /
    • pp.527-534
    • /
    • 2007
  • To operate scientifical and integrated management of water resources, it needs to identify clearly the quantitative variation and moving pathway of water resources in a basin. Moreover, it needs to also estimate more precisely the amount of runoff generating from the precipitation. Thus, in this study, to carry out more reliable hydrologic analyses, the runoff characteristics according to detailed runoff components and water balance in a basin are analyzed. As a result of yearly water balance analyses, during the period of drought year, the loss is bigger than that of 6-year mean loss and the return flow of groundwater is the most dominant component of runoff. During the period of flood year, the loss is smaller about 4% than that of 6-year mean loss and the subsurface water is the most dominant component of runoff. The loss due to the interception and evapotranspiration for 6-year mean loss is about 53% of the total rainfall, the mean runoff ratio is about 27% and the baseflow is about 22%.

An Experimental Study for Drainage Capacity Increment at Surcharged Square Manholes (과부하 사각형 맨홀의 배수능력 증대에 관한 실험적 연구)

  • Kim, Jung Soo;Song, Ju Il;Yoon, Sei Eui
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.6
    • /
    • pp.619-625
    • /
    • 2008
  • Urban sewer systems are designed to operate in open-channel flow regime and energy loss at square manholes is usually not significant. However, the energy loss at surcharged manholes is considered as one of the major causes of inundation in urban area. Therefore, it is necessary to analyze the head loss associated with manholes, especially in surcharged flow. Hydraulic experimental apparatus which can change the manhole inner profile(CASE I, II, III, and IV) and the invert types(CASE A, B, C) were installed for this study. The experimental discharge was $16{\ell}/sec$. As the ratio of b/D(manhole width/inflow pipe diameter) increases, head loss coefficient increases due to strong horizontal swirl motion. The head loss coefficients for CASE I, II, III, and IV were 0.46, 0.38, 0.28 and 0.37, respectively. Side covers increase considerably drainage capacity at surcharged square manhole when the ratio of d/D(side cover diameter/inflow pipe diameter) was 1.0. The head loss coefficients for CASE A, B, and C were 0.45, 0.37, and 0.30, respectively. Accordingly, U-invert is the most effective for energy loss reduction at surcharged square manhole. This head loss coefficients could be available to evaluate the urban sewer system with surcharged flow.

Correlation analysis of key operating indicators of waterworks with the Infrastructure Leakage Index (ILI) (수도사업자의 주요 운영지표와 ILI(Infrastructure Leakage Index)와의 상관관계 분석)

  • Jeon, Seunghui;Hyun, Inhwan;Kim, Dooil
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.3
    • /
    • pp.237-246
    • /
    • 2021
  • The ILI, developed by the IWA (International Water Association), has been used in many countries as an indicator of water leakage. In Korea, the revenue water has been used as a performance indicator for waterworks although there is an opinion to replace it with the ILI. Hence, it has been necessary to investigate whether the ILI can replace the revenue water in Korea. The four main operating indicators (i.e., water service population, profit-loss ratio, fiscal self-reliance, and aged pipe rate) of 162 Korean waterworks were compared with the ILI with the linear regression method. Local water authorities with more than 1 million water service population, with more than 60% profit-loss ratio, more than 40% and less than 60% fiscal self-reliance, and more than 20% aged pipe rate showed meaningful correlation between the four parameters and the ILI. In the remaining cases, their correlations were little or weak. This means that using the ILI may not be an efficient method to represent the performance of the water supply system in Korea because of the lack of UARL (Unavoidable Annual Real Losses) data accuracy. To use the ILI in Korea, it will be required to carry out an additional research to accumulate reliable CARL (Current Annual Real Losses) and UARL data in the future.

A Study on the Estimation Method of Loss Ratio in Dredged Fills (준설매립토의 유실율 평가방법 정립에 관한 연구)

  • Kim, Seog-Yeol;Choi, Hyo-Pum;Park, Jae-Eock;Kim, Seung-Wook
    • Journal of the Korean GEO-environmental Society
    • /
    • v.3 no.1
    • /
    • pp.67-77
    • /
    • 2002
  • Volume change of the dredged soils is composed of the volume loss of soil particle flowing over an outflow weir with water and settlement due to both the self-weight consolidation in reclaimed layer and the desiccation at the surface of reclaimed layer. In order to estimate the amount of soil particles flowing over an outflow weir with water, the evaluation procedure of loss ratio of the dredged soils is proposed in the present study based on the Marsal's modified breakage theory and the results of hydrometer analyses. To verify a validity of the proposed procedure, evaluated loss ratio is compared with results from the other existing methods. The model test results and those of field test were compared and analyzed. Also, the variation of soil loss ratio was examined through the model test in the lab.

  • PDF

Soil Erosion Modeling Using RUSLE and GIS on the Imha Watershed (RUSLE 모형을 이용한 임하댐 유역에서의 토양유실량 평가)

  • Kim, Hyeon-Sik;Julien, Pierre. Y.;Yum, Kyung-Taek
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.126-131
    • /
    • 2007
  • The Imha watershed is vulnerable to severe erosion due to the topographical characteristics such as mountainous steep slopes. The RUSLE model was combined with GIS techniques to analyze the mean annual erosion losses and the soil losses caused by typhoon "Maemi". The model is used to evaluate the spatial distribution of soil loss rates under different land uses. The mean annual soil loss rate and soil losses caused by typhoon "Maemi"were predicted as $3,450\;tons/km^2/year$ and $2,920\;ton/km^2/"Maemi"$, respectively. The sediment delivery ratio was determined to be about 25% from the mean annual soil loss rate and the surveyed sediment deposits in the Imha reservoir in 1997.

  • PDF

A Study on the Performance Analysis of Butterfly Valve in Water Fire Extinguishing System (수계소화시스템 버터플라이 밸브의 성능해석에 관한 연구)

  • Lee, Dong-Myung
    • Fire Science and Engineering
    • /
    • v.21 no.3
    • /
    • pp.91-96
    • /
    • 2007
  • Performance analysis of the butterfly valve in water fire extinguishing has been carried out. Performance analysis of the butterfly valve are investigated for torque characteristics, pressure loss and cavitations. The torque characteristics of disc are corrected for the angles of attack of valve disc by theoretical torque equation, and correction equation is added. The pressure loss coefficient on opening angle of valve has been formulated by applying the Carnot's equations. The torque characteristics, pressure loss and cavitations of the butterfly valve are analyzed for the ratio of disc thickness to the valve diameter. Cavitations are analyzed from the pressure loss coefficient of valve. The analysis of pressure loss and cavitation has been carried out change of the thickness ratio on opening angle of valve. These analysis data are utilize to necessary engineering data to develope of the butterfly valve.