• Title/Summary/Keyword: ratio of leaching

Search Result 257, Processing Time 0.024 seconds

Evaluation of Field Applicability with Coal Mine Drainage Sludge as a Liner: Part II: Effect of Freezing/Thawing in CMDS Mixed Liner (차수재로의 광산슬러지 재활용 적용성 평가: Part II: 동결/융해에 의한 광산슬러지 혼합 차수재의 거동)

  • Lee, Jai-Young;Bae, Sun-Young;Park, Kyoung-Joo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.2
    • /
    • pp.73-79
    • /
    • 2011
  • Based on the results of Part 1 of our two-parts paper, the possibility on field applicability of CMDS(Coal Mine Drainage Sludge) mixed with bentonite and cement as a liner in landfill sites was investigated. The optimum moisture content that met the landfill liner condition was obtained when the ratio of CMDS: bentonite: cement was 1: 0.5: 0.3 in a lab-scale. The relative compaction was measured in 90.1%, which results for construction field have been generally acceptable. In this study, a large-scale Lysimeter($1.0m{\times}1.5m{\times}2.0m$) was used to simulate the effects of the layer on the freeze/thaw by -20 average temperature. The mixture after freezing/thawing showed compressive strength more than $5kg/cm^2$, which was satisfied with EPA standards. Initial permeability of CMDS was $7.10{\times}10^{-7}cm/s$ and permeability its mixture after freezing/thawing was increased to $9.80{\times}10^{-7}cm/s$. The change of temperature in the layers rises and falls with linear and temperature gradient keep maintain the present state. Moisture contents in the layers have not been radically changed. Through the leaching test determined by KSLT method, it was found that heavy metals excluding Zn and Ni were not leached out or leached out less than the standards during 7 cycles of freezing/thawing process. Since it shows the increased permeability about 1.5 times and slight change in moisture content, but it was satisfied with EPA standar through 7 cycles of freezing/thawing process, this mixture can be applied as a liner in landfill final cover system.

Study on the production of porous CuO/MnO2 using the mix proportioning method and their properties (반응몰비에 따른 다공성 CuO/MnO2의 제조 및 특성 연구)

  • Kim, W.G.;Woo, D.S.;Cho, N.J.;Kim, Y.O.;Lee, H.S.
    • Analytical Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.182-186
    • /
    • 2015
  • In this study, the porous CuO/MnO2 catalyst was prepared through the co-precipitation process from an aqueous solution of potassium permanganate (KMnO4), manganese(II) acetate (Mn(CH3COO)2·4H2O) and copper(II) acetate (Cu(CH3COO)2·H2O). The phase change in MnO2 was analyzed according to the reaction molar ratio of KMnO4 to Mn(CH3COO)2. The reaction mole ratio of KMnO4 to Mn(CH3COO)2·4H2O was varied at 0.3:1, 0.6:1, and 1:1. The aqueous solution of Cu(CH3COO)2 was injected into a mixed solution of KMnO4 and Mn(CH3COO)2 to 10~75 wt% relative to MnO2. The Cu ion co-precipitates as CuO with MnO2 in a highly dispersed state on MnO2. The physicochemical property of the prepared CuO/MnO2 was analyzed by using the TGA, DSC, XRD, SEM, and BET. The different phase types of MnO2 were prepared according to the reaction mole ratio of KMnO4 to Mn(CH3COO)2·4H2O. The results confirmed that the porous CuO/MnO2 catalyst with γ-phase MnO2 was produced in the reaction mole ratio of KMnO4 to Mn(CH3COO)2 as 0.6:1 at room temperature.

A Study on the Physico-Chemical Characteristics of Acid Sulfate Soil in Kimhae Plain (김해평야(金海平野)에 분포(分布)된 특이산성토(特異酸性土)(답)(沓)의 이화학적성질(理化學的性質)에 관(關)한 조사연구(調査硏究))

  • Park, N.J.;Park, Y.S.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.2 no.1
    • /
    • pp.15-26
    • /
    • 1969
  • The study on physico-chemical characteristics of the acid sulfate soil present in Kimhae plain was carried out with 28 surface and subsoils from lower and higher produtive area and two representative profile samples from the areas reclaimed a few decades ago and around 10 years ago respectively. 1. There are no differences in soil texture between lower and higher productive soils being mostly silty clay loam and silty clay. 2. Very significant differences in pH, degree of base saturation and extractable aluminium content are observed; lower pH, lower degree of base saturation and higher aluminium in the lower productive soils and subsoils. The pH and degree of base saturation of these soils are extremely low whereas aluminium content is very high compared to ordinary paddy soil. 3. Cation exchange capacity of these soils are slightly higher than ordinary paddy soils. In higher productive soils, exchangeable calcium and magnesium are of same order, whereas in lower productive soils magnesium content is appreciably higher than calcium. 4. Though the soil is derived from marine and estuarine sediment, the soluble salt content is not high. There are only few lower productive surface soils and subsoils having Ec values of the saturation extracts higher than 4 mmhos but lower than 9 mmhos/cm. 5. Organic matter content of these soils is a bit higher compared to ordinary paddy soils, but, nitrogen content is comparatively low. C/N ratio of these soils is around 12. 6. Sulfur content is considerably higher but oxidizable sulfur is found to be very low. Total sulfur is generally high in subsoils and lower productive soils. 7. Active iron and available silica are slightly higher than ordinary paddy soils but easily reducible manganese is very low. Almost no differences are also observed between lower and higher productive soils. 8. Available phosphorus content is extremely low in particular, regardless of higher or lower productive soils. 9. The two representative profiles from the area of earlier reclamation and recent one show that samples from earlier reclaimed area contain less amount of free acids, sulfur compounds, toxic aluminium and soluble salts etc. than the other. This indicate greater leaching and possible addition of lime for a longer period of time. 10. From the results obtained, it can be concluded the higher productivity of group I soils is due to the greater leaching and neutralisation of acidity by liming materials, It can also be concluded that the productivity of both types can be increased by addition of liming materials and improvement of drainage facilities.

  • PDF

Studies on the Interpretative Classification of Paddy Soils in Korea I : A Study on the Classification of Sandy Paddy Soils (우리나라 답토양(畓土壌)의 실용적분류(実用的分類)에 관(関)한 연구(硏究) -제1보(第一報) 사질답(砂質畓) 분류(分類)에 관(関)하여)

  • Jung, Yeun-Tae;Yang, Euy-Seog;Park, Rae-Kyung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.15 no.2
    • /
    • pp.128-140
    • /
    • 1982
  • The distribution and practical classification of sandy paddy soils, which have the most extensive acreage among low productive paddy soils in Korea and have distinctive improvement effects, were studied to propose a tentative new classification system of sandy textured paddy soils as a means of improving the "Paddy Soil Type Classification" scheme used. The results are summarized as follows; 1. The potential productivity of sandy textured paddy soils was about 86% of normal paddy and the coefficient of variation was relatively high indicating that the properties of soils included were not sufficiently homogeneous. 2. As the poorly drained and halomorphic (> 16 mmhos/cm of E.C. at $25^{\circ}C$) sandy soils are not included in the "Sandy Soil" type according to the criteria of "Soil Type Classification", the recommendation of "adding clay earth" become complicated, and the soil type have to change when the salts washed away or due to ground water table fluctuations. 3. Coarse textured soils were entirely included in the "Sandy Soils" in the tentative criteria of sandy soil classification proposed, and the sandy soils were subdivided into 4 subtypes that is "Oxidized leaching sandy paddy", Red-ox. intergrading sandy paddy", "Reduced accumulating sandy paddy" and "Reduced halomorphic sandy paddy". The system of sandy soil classification proposed were consisted of following categories; Type (Sandy paddy)-Sub-type (4)-Texture family (5)-Soil series (48). 4. The variation of productivities according to the proposed scheme was more homogenized than that of the present device. 5. The total extent of sandy paddy soils was 409, 902 ha (32.3% of total paddy) according to the present classification system, but the extent reached 492,983 ha (38.9%) by the proposed system. The provinces of Gyeong-gi (88.923ha), Jeon-bug (69.717 ha), Gyeong-bug (55.390 ha) have extensive acreage of sandy paddy soils, and the provinces that had high ratio of sandy paddy soils were Gang-weon (58.9%), Gyeong-gi (50.5%), Chung-bug (48.5%), Jeon-bug (41.0%) etc. The ratio was increased by the proposed scheme, e.g. 71.4% in the case of Gang-weon prov. 6. According to the suitability group of paddy soils, the sandy soils mostly belong to 3 class (69.1%) and 4 class (29.2%). Coarse loamy textural family (59.2%) and coarse silty (16.1 %) soils were dominantly distributed. 7. The "Red-ox. intergrading subtype" of sandy paddy pertinent to 49.6% (245,012 ha) while the "Oxidized leaching sub-type" reaches to 33.5% (64,890 ha) and the remained 16.9% (83,081ha) belong to "Reduced accumulating sub-type (14.0%) and "Reduced halomorphic sub-type (2.9%)" according to the proposed scheme.

  • PDF

Hydrogeochemical study of a watershed in Pocheon area: controls of water chemistry

  • Kim, Kyoung-Ho;Yun, Seong-Taek;Chae, Soo-Ho;Jean, Jong-Wook;Lee, Jeong-Ho;Kweon, Hae-Woo
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.121-121
    • /
    • 2004
  • The groundwater in the Pocheon area occurs from both a fractured bedrock aquifer in igneous and metamorphic rocks and an alluvial aquifer with a thickness of <50 m, and forms a major source of domestic and agricultural water supply. In this study, we performed a hydrogeochemical study in order to identify the control of geochemical processes on groundwater quality. For this study, groundwater level and physicochemical parameters (EC, Eh, pH, alkalinity) were monitored once a month from a total of 150 groundwater wells between June 2003 to August 2004. A total of 153 water samples (13 surface water, 66 alluvial groundwater, 74 bedrock groundwater) were also collected and analyzed in February 2004. Groundwater chemistry in the study area is very complex, depending on a number of major factors such as geology, degree of chemical weathering, and quality of recharge water. Hydrochemical reactions such as the leaching of surficial and near-solace soil salts, dissolution of calcite, cation exchange, and weathering of silicate minerals are proposed to explain the chemistry of natural groundwater. Alluvial groundwaters locally have very high TDS concentrations, which are characterized by their chloride(nitrate)-sulfate-bicabonate facies and low Na/Cl ratio. Their grondwater levels are highly fluctuated according to rainfall event. We suggest that high nitrate content and salinity in such alluvial groundwaters originates from the local recharge of sewage effluents and/or fertilizers. Likewise, high concentrations of nitrate were also locally observed in some bedrock groundwaters, suggesting their effect of anthropogenic contamination. This is possibly due to the bypass flow taking place through macropores. Tile degree of the weathering of silicate minerals seems to be a major control of the distribution of major cations (sodium, calcium, magnesium, potassium) in bedrock groundwaters, which show a general increase with increasing depth of wells. Thermodynamic interpretation of groundwater chemistry shows that the groundwater in the study area is in chemical equilibrium with kaolinite and Na-montmorillonite, which indicates that weathering of plagioclase to those minerals is a major control of hydrochemistry of bedrock groundwater. The interpretation of the molar ratios among major ions, as well as the mass balance calculation, also indicates the role of both dissolution/precipitation of calcite and Ca-Na cationic exchange as bedrock groundwaters evolves progressively.

  • PDF

Chemical weathering in King George Island, Antarctica

  • Jeong, Gi-Young
    • Proceedings of the Mineralogical Society of Korea Conference
    • /
    • 2003.05a
    • /
    • pp.66-66
    • /
    • 2003
  • King George island, Antarctica, is mostly covered by ice sheet and glaciers, but the land area is focally exposed for several thousand years after deglaciation. For a mineralogical study of chemical weathering in the polar environment, glacial debris was sampled at the well-developed patterned ground which was formed by long periglaclal process. As fresh equivalents, recently exposed tills were sampled at the base of ice cliff of outlet glaciers and at the melting margin of ice cap together with fresh bedrock samples. Fresh tills are mostly composed of quartz, plagioclase, chlorite, and illite, but those derived from hydrothermal alteration zone contain smectite and illite-smectite. In bedrocks, chlorite was the major clay minerals in most samples with minor illite near hydrothermal alteration zone and interstratified chlorite-smectite in some samples. Smectite closely associated with eolian volcanic glass was assigned to alteration in their source region. Blocks with rough surface due to chemical disintegration showed weathering rinds of several millimeter thick. Comparision between inner fresh and outer altered zones did not show notable change in clay mineralogy except dissolution of calcite and some plagioclase. Most significant weathering was observed in the biotite flakes, eolian volcanic glass, sulfides, and carbonates in the debris. Biotite flakes derived from granodiorite were altered to hydrobiotite and vermiculite of yellow brown color. Minor epitactic kaolinite and gibbsite were formed in the cleaved flakes of weathered biotite. Pyrite was replaced by iron oxides. Calcite was congruently dissolved. Volcanic glass of basaltic andesite composition showed alteration rim of several micrometer thick or completely dissolved leaving mesh of plagioclase laths. In the alteration rim, Si, Na, Mg, and Ca were depleted, whereas Al, Ti, and Fe were relatively enriched. Mineralization of lichen and moss debris is of much interest. They are rich of A3 and Si roughly in the ratio of 2:1 to 3:1 typical of allophane. In some case, Fe and Ti are enriched in addition to Al and Si. Transmission electron microscopy of the samples rich of volcanic glass showed abundant amorphous aluminosilicates, which are interpreted as allophane. Chemical weathering in the King George Island is dominated by the leaching of primary phyllosilicates, carbonates, eolian volcanic glass, and minor sulfides. Authigenesls of clay minerals is less active. Absence of a positive evidence of significant authigenic smectite formation suggests that its contribution to the clay mineralogy of marine sediments are doubtful even near the maritime Antarctica undergoing a more rapid and intenser chemical weathering under more humid and milder climate.

  • PDF

Physicochemical Effects of Bottom Ash on the Turfgrass Growth Media of Sandy Topsoil in Golf Course (석탄바닥재 처리가 골프장 잔디식재 사질토양의 이화학성에 미치는 영향)

  • Lee, Ju-Young;Choi, Hee-Youl;Yang, Jae-E
    • Asian Journal of Turfgrass Science
    • /
    • v.24 no.2
    • /
    • pp.199-204
    • /
    • 2010
  • Much of the coal ash by thermal power plant has gradually been increased, however researches on the recycling of bottom ash has not been investigated enough so far. In this research, the lysimeter test was conducted to find out the possibilities of bottom ash as soil amendment to improve the physiochemical properties of sandy topsoil of turfgrass in golf course. The turfgrass growth test and leaching test were conducted on the lysimeter. The lysimeter columns were manufactured with various topsoil mixing ratios of 0, 10, 20, 30, and 50% of bottom ash with sand. As a result of leachate analysis through the lysimeter column, the higher ratios of bottom ash mixed affect significantly on water holding capacity of topsoil sand media with decreasing of the percolation rate. The results of leachate analysis in every three days interval, the pH of leachate increased with the bottom ash ratios, but the volume of $NO_3$-N, $NH_4$-N and K decreased significantly. However, the level of EC of leachate had constantly maintained. These results indicate that the application of bottom ash may improve turfgrass growth with water holding capability and fertility of sandy topsoil. However, the negative effects of the bottom ash also evaluated by reducing water permeability and solubility of $PO_4$-P by adsorption into soil particles. The results indicates that the reasonable mixing ratio of the bottom ash as soil amendment should be less than 20% (v/v) with sand which has a low water-holding and fertility in golf course topsoil layers.

Synthesis of Iron Nanopowder from FeCl3 Solution by Chemical Reduction Method for Recycling of Spent Neodymium Magnet (네오디뮴 폐자석 재활용을 위한 화학환원법을 이용한 철 나노 분말 제조)

  • Ha, Yonghwang;Gang, Ryun-Ji;Choi, Seung-Hoon;Yoon, Ho-Sung;Ahn, Jong-Gwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.12
    • /
    • pp.6187-6195
    • /
    • 2012
  • Recycling process of iron should be developed for efficient recovery of neodymium(Nd), rare metal, from acid-leaching solution of neodymium magnet. In this study, $FeCl_3$ solution as iron source was used for synthesis of iron nanoparticle with the condition of various factors, etc, reductant, surfactant. $Na_4O_7P_2$ and polyvinylpyrrolidone(PVP) as surfactants, $NaBH_4$ as reductant, and palladium chloride($PdCl_2$) as a nucleation seed were used. Iron powder was analyzed with instruments of XRD, SEM and PSA for measuring shape and size. Iron nanoparticles were made at the ratio of 1 : 5(Fe (III) : $NaBH_4$) after 30 min of reduction time. Size and shape of iron particles synthesized were round-form and 50 nm ~ 100 nm size. Zeta-potential of iron at the 100 mg/L of $Na_4O_7P_2$ was negative value, which is good for dispersion of metal particle. When $Na_4O_7P_2$(100 mg/L), PVP($FeCl_3$ : PVP = 1 : 4, w/w) and Pd($FeCl_3$ : $PdCl_2$ = 1 : 0.001, w/w) were used, iron nanoparticles which are round-shape, well-dispersed, near 100 nm-sized can be made.

Chemical Effects on Head Loss across Containment Sump Strainer under Post-LOCA Environment (LOCA이후 환경에서 원자로건물집수조 여과기의 수두손실에 대한 화학적 영향)

  • Ku, Hee-Kwon;Jung, Bum-Young;Hong, Kwang;Jeong, Eun-Sun;Jung, Hyun-Jun;Park, Byung-Gi;Rhee, In-Hyoung;Park, Jong-Woon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.11
    • /
    • pp.3260-3268
    • /
    • 2009
  • A test apparatus has been fabricated to simulate chemical effect on head loss through a strainer in a pressurized water reactor (PWR) containment water pool after a loss of coolant accident (LOCA). Tests were conducted under condition of same ratio of strainer surface area to water volume between the test appratus and the containment sump. A series of tests have been performed to investigate the effects of spray, existence of calcium-silicate with tri-sodium phosphate (TSP), and composition of materials. The results showed that head loss across the chemical bed with even a small amount of calcium-silicate insulation instantaneously increased as soon as TSP was added to the test solution. Also, the head loss across the test screen is strongly affected by spray duration and is increased rapidly at the early stage, because of high dissolution and precipitation of aluminum and zinc. After passivation of aluminum and zinc by corrosion, the head loss increase is much slowed down and is mainly induced by materials such as calcium, silicon, and magnesium leached from NUKONTM and concrete. Furthermore, it is newly found that the spay buffer agent, tri-sodium phosphate, to form protective coating on the aluminum surface and reduce aluminum leaching is not effective for a large amount of aluminum and a long spray.

Synthesis of High Purity Al2O3 from Low Grade Bauxite Ore(II) (저품위 Bauxite로부터 고순도 Al2O3의 합성(II))

  • Kwon, Kung-Taek;Song, Yon-Ho;Lee, Chul-Tae
    • Applied Chemistry for Engineering
    • /
    • v.5 no.4
    • /
    • pp.597-608
    • /
    • 1994
  • A new process for the production of high purity ${\alpha}-Al_2O_3$ from ammonium aluminium sulfate solution abtained through the sulfation of low grade bauxite ore with $(NH_4)_2SO_4$, and leaching of the sulfated product was investigated. This process is consisted of solvent extraction for Fe component removal from ammonium aluminum sulfate solution and homogeneous precipitation of Al containing precipitate from the refined ammonium aluminium sulfate solution by using urea as precipitator. The optimum conditions of solvent extraction with Alamine 336 as extractant were shaking time of 4min, organic phase ratio to aqueous phase of 0.25. The types of precipitation products from this precipitation were amorphous alumina gel, pseudo-boehmite and crystalline boehmite in the lower temperature of $100^{\circ}C$, in the range from $125^{\circ}C$ to $150^{\circ}C$, and above $150^{\circ}C$, respectively. And also amorphous alumina gel hydrate in $1000^{\circ}C$ and crystalline boehmite in $1250^{\circ}C$ were tranfered to ${\alpha}-Al_2O_3$, respectively. This alumina was identified as ${\alpha}-Al_2O_3$ of purity 99.7%.

  • PDF