• 제목/요약/키워드: ratio of alloy

검색결과 756건 처리시간 0.028초

송전선 강심용 Fe-Ni-Co-C 합금의 열팽창계수에 미치는 자기적 특석의 영향 (Effects of Magnetic Characteristics on Coefficient of Thermal Expansion in Fe-Ni-Co-C Invar Alloy for Transmission Line)

  • 김봉서;김병걸;이희웅
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 C
    • /
    • pp.1346-1348
    • /
    • 2001
  • Generally, Invar alloy shows very low thermal expansion characteristics, lower than $2{\times}10^{-6}$/K approximately. To apply Fe-Ni-Co-C Invar alloy as a core material for large ampacity transmission line we studied the effects of magnetic properties on coefficient of thermal expansion. The coefficient of thermal expansion(CTE) suddenly decreases with addition of a little carbon(0.08%), increases with the increasing carbon and has a constant value at the composition over than 1.0%C. The trend of Curie temperature change with carbon is similar with that of CTE. Therefore, the CTE has a linear relationship with Curie temperature. However, the CTE linearly decreases with the ratio of saturation magnetization and Curie temperature(${\sigma}_s/T_c$).

  • PDF

Zr-Ti-Cu-Ni-X계 합금의 첨가원소에 따른 비정질 형성능 (Effect of Alloying Elements on the Glass Forming Ability of Zr-Ti-Cu-Ni-X Alloys)

  • 최철진
    • 한국주조공학회지
    • /
    • 제21권5호
    • /
    • pp.286-289
    • /
    • 2001
  • The glass formation behavior was investigated in the melt spun Zr-Ti-Cu-Ni-X (X=B, P and Si) ribbons. The magnitude of supercooled liquid region of Zr-Ti-Cu-Ni alloy increased with an addition of alloying element. The glass transition temperature and the crystallization temperature increased and the magnitude of supercooled liquid region decreased with increasing the content of alloying elements. The largest supercooled liquid region was observed in the Si containing alloy. This is believed to be due to the dense atom packing with the optimum atomic size ratio of constituent elements.

  • PDF

Fe-29%Ni-17%Co 저열팽창성 합금의 기계적 및 열팽창 특성에 미치는 냉간 가공의 영향 (Effect of cold working on the thermal expansion and mechanical properties of Fe-29%-Ni-17%Co low thermal expansion alloy)

  • 이기안;김송이;남궁정;김문철
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.355-356
    • /
    • 2009
  • The change of thermal expansion and mechanical behaviors by cold working has been investigated in Fe-29%Ni-17%Co low thermal expansion Kovar alloy. Fe-29%Ni-17%Co alloy was cold rolled gradually and prepared to plates having reduction ratio of 0%, 20%, 40%, 60%, and 80%. Annealing effect on the properties was also studied. Thermal expansion was measured from $25^{\circ}C$ to $600^{\circ}C$ with a heating rate of $5^{\circ}C$/min by using vacuum differential dilatometer. It was found that thermal expansion coefficient ($\alpha_{30{\sim}400}$) slightly decreased (reduction ration of 20%) and then remarkably increased (above reduction ration of 40%) with increasing reduction ratio of cold rolling. Thermal expansion coefficient ($\alpha_{30{\sim}400}$) was sharply decreased after annealing heat-treatment. Yield and tensile strengths were continuously increased and elongation was decreased by cold roiling. Microstructural observation and X-ray diffraction analysis results showed that the $\alpha$ phase significantly increased as the reduction ratio increased. The slight decrease of thermal expansion coefficient bellow reduction ration of 20% could be explained by the destroying short-range ordering and the decreasing of grain size. The significant increase of thermal expansion coefficient with cold rolling mainly attributed to the appearance of $\alpha$ phase. The correlation between the microstructural cause and invar phenomena for the low thermal expansion behavior was also discussed.

  • PDF

Al1050 합금에 Plasma Electrolytic Oxidation으로 형성된 산화피막 분석 (Analysis of Oxide Coatings Formed on Al1050 Alloy by Plasma Electrolytic Oxidation)

  • 김배연;이득용;김용남;전민석;유완식;김광엽
    • 한국세라믹학회지
    • /
    • 제46권3호
    • /
    • pp.295-300
    • /
    • 2009
  • The crystal structure of surface coatings on Al1050 alloy by PEO (Plasma Electrolytic Oxidation), were investigated. The electrolyte for PEO was Na-Si-P system solution. The main crystalline phase were $\gamma$-alumina and $\alpha$-alumina. Crystallinity was increased with applied voltage and applied time. The dominant crystalline phase were affected not only chemical composition of Al alloy substrate and electrolyte, but also the +/- ratio of applied voltage.

파손확률에 따른 마그네슘합금의 피로설계수명 예측 (Prediction of Fatigue Design Life in Magnesium Alloy by Failure Probability)

  • 최선순
    • 한국생산제조학회지
    • /
    • 제19권6호
    • /
    • pp.804-811
    • /
    • 2010
  • The fatigue crack propagation is stochastic in nature, because the variables affecting the fatigue behavior are random and have uncertainty. Therefore, the fatigue life prediction is critical for the design and the maintenance of many structural components. In this study, fatigue experiments are conducted on the specimens of magnesium alloy AZ31 under various conditions such as thickness of specimen, the load ratio and the loading condition. The probability distribution fit to the fatigue failure life are investigated through a probability plot paper by these conditions. The probabilities of failure at various conditions are also estimated. The fatigue design life is predicted by using the Weibull distribution.

알루미늄 튜브의 열간가스 성형해석 (Hot Air forming Analysis of Aluminum Tube)

  • 김헌영;임희택;황상희;이기동;이우식;김대업
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 추계학술대회 논문집
    • /
    • pp.116-119
    • /
    • 2007
  • The application of light weight materials, such as aluminum alloy, has been limited due of their poor formability. Especially, aluminum alloy tube has limited expansion capability at most 15% at room temperature. New manufacturing process, called hot air forming, is introduced to apply aluminum tube to the automotive suspension components which have complex shape and require high expansion ratio about 40%. The process is carried out at the elevated temperature above $500^{\circ}C$, so numerous material properties and process parameters related to the high temperature should be investigated and determined to get a sound product. In this study, the effect of thermal properties and forming parameters such as the temperature of tool, axial feeding and gas pressure are analyzed by using explicit finite element method.

  • PDF

AZ31 마그네슘합금의 레이저 용접성에 미치는 공정변수의 영향 (Effect of Process Parameters on Laser Weldability of AZ31 Magnesium Alloy)

  • 김종도;길병래;이정한
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권4호
    • /
    • pp.570-577
    • /
    • 2008
  • Magnesium alloys are potentially useful as structural materials due to higher strength/weight ratio, heat conductivity and recyclability compared to other alloys. These alloys have attracted the interest of modern manufacturing such as the automobile, computer, communication and consumer electronic appliances industries. Hence welding techniques are required to be developed for these applications. Laser are known to be an excellent tool for them. This paper presents the laser weldability of AZ31 magnesium alloy with CW Nd:YAG laser. The low viscosity and surface tension of the melt pool make magnesium more difficult to weld than steel. As a result of this study, optimal process parameters could be obtained without weld defects. Also it was certain that cutting methods had influence on butt weldability.

불순 Fe를 함유한 A356 주조합금에서 미세조직 형성에 관한 Mn과 Cr의 효과 (The Effects of Mn and Cr Additions on the Microstructure of A356 Alloys Containing Impure Fe)

  • 한상원
    • 한국주조공학회지
    • /
    • 제25권3호
    • /
    • pp.128-133
    • /
    • 2005
  • The effects of Mn and Cr on the crystallization behaviors of Fe-bearing intennetallics in A356 alloy were studied. Coarse and acicular ${\beta}-Al_{5}$FeSi phase in A356-0.20wt.%Fe alloy was modified into small ${\alpha}$-Al(Fe,Mn)Si and ${\alpha}$-Al(Fe,Cr)Si phases in response to Mn and Cr addition, respectively. Increasing of Mn addition amount elevates the crystallizing temperature of ${\alpha}$-Al(Fe,Mn)Si and the Mn/Fe ratio in the ${\alpha}$-Al(Fe,Mn)Si. Cr is more effective to modify ${\beta}-Al_{5}$FeSi in comparison with Mn. ${\alpha}$-Al(Fe,Mn)Si phase had BCC/SC dual structure.

마그네슘 판재를 위한 온도 의존형 C-H/V 구성 모델에 관한 연구 (The Temperature Dependent C-H/V Constitutive Modeling for Magnesium Alloy Sheet)

  • 박종현;이종길;김헌영
    • 소성∙가공
    • /
    • 제21권4호
    • /
    • pp.221-227
    • /
    • 2012
  • The automotive and electronic industries have seriously considered the use of magnesium alloys because of their excellent properties such as strength to weight ratio, EMI shielding capability, etc. However, it is difficult to form magnesium alloys at room temperature because of the mechanical deformation related to twinning. Hence, magnesium alloys are normally formed at elevated temperatures. In this study, a temperature dependent constitutive model, the C-H/V model, for the magnesium alloy AZ31B sheet is proposed. A hardening law based on nonlinear kinematic and H/V(Hollomon/Voce) hardening model is used to properly characterize the Bauschinger effect and the stabilization of the flow stress. Material parameters were determined from a series of uni-axial cyclic experiments(C-T-C) with the temperature ranging between 150 and $250^{\circ}C$. The developed models are fit to experimental data and a comparison is made.

AZ31 합금 판재의 변형모드에 따른 성형한계에 관한 연구 (Forming Limits Diagram of AZ31 Alloy Sheet with the Deformation Mode)

  • 정진호;이영선;권용남;이정환
    • 소성∙가공
    • /
    • 제17권7호
    • /
    • pp.473-480
    • /
    • 2008
  • Sheet metal forming of Mg alloy is usually performed at elevated temperature because of the low formability at room temperature. Therefore, strain rates affected with the forming temperature and speed must be considered as important factor about formability. Effects of process parameters such as various temperatures and forming speeds were investigated in circular cup deep drawing. From the experimental results, it is known that LDR (Limit Drawing Ratio) increase as the strain rate increase. On the contrary, the FLD (Forming Limit Diagram) shows lower value as faster strain rate. Therefore, anisotropy values are investigated according to the temperature and strain rates at each forming temperature. R-values also represent higher value as faster strain rate. It is known that the formability can be different with the deformation mode on warm forming of AZ31 alloy sheet.