• 제목/요약/키워드: rated strain

검색결과 54건 처리시간 0.023초

3D 프린팅용 SHCC의 흐름값과 1축 인장 특성에 미치는 섬유 혼입률의 영향 (Effect of Fiber Volume Fractions on Flow and Uniaxial Tension Properties of 3D Printed SHCC)

  • 현창진;김효정;이병재;김윤용
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제28권3호
    • /
    • pp.83-90
    • /
    • 2024
  • 이 연구는 PVA 섬유로 보강된 변형경화형 시멘트 복합재료(SHCC)의 3D 프린팅 특성을 조사하였다. 섬유 혼입률(Vf)의 영향을 파악하기 위하여 섬유 혼입률이 다른 F1.0 (Vf=1.0%), F1.5 (Vf=1.5%), F1.8 (Vf=1.0%) 등의 3가지 SHCC 배합을 제작하였다. F1.5와 F1.8 배합이 다중 미세균열 발생을 위한 이론적 필수 조건을 충족하는 것으로 나타났으며, 섬유 혼입률이 높을수록 필수 조건은 더 쉽게 충족되었다. 3가지 SHCC 배합의 흐름값은 120~160의 범위 내에 있어 3D 프린팅 가능한 범주에 있음을 확인하였다. 한편, 섬유 혼입률이 증가할수록 흐름값은 감소하였다. 3D 프린터로 출력된 SHCC 표면의 육안 관찰 결과, F1.0 혼합물은 Level-3 등급으로, F1.5와 F1.8 혼합물은 Level-2 등급으로 평가되었다. 섬유 혼입률이 높을수록 표면 품질이 저하 되어, 추후 연구를 통하여 보다 높은 품질의 3D 프린팅용 SHCC를 제작하기 위한 배합 조정이 필요할 것으로 사료된다. 1축 인장 거동을 살펴본 결과, F1.0 혼합물은 낮은 변형률에서 파괴된 반면, F1.5와 F1.8 혼합물은 다중 미세균열이 발생하면서 우수한 인장변형률 경화거동을 나타내었다.

뇌졸중 환자의 손 고정장치 제어를 위한 다축 힘/모멘트센서 개발 (Development of Multi-Axis Force/Moment Sensor for Stroke Patient's Hand Fixing System Control)

  • 김현민;윤정원;김갑순
    • 센서학회지
    • /
    • 제20권5호
    • /
    • pp.351-356
    • /
    • 2011
  • Stroke patients should exercise for the rehabilitation of their fingers, because they can't use their hand and fingers. Their hand and fingers are fixed on the hand fixing system for rehabilitation exercise of them. But the hands clenched the fist of stroke patients are difficult to fix on it. In order to fix the hands and fingers, their palms are pressed with pressing bars and are controlled by reference force. The fixing system must have a five-axis force/moment sensor to force control. In this paper, the five-axis force/moment sensor was developed for the hand fixing system of finger-rehabilitation exercising system. The structure of the five-axis force/moment sensor was modeled, and designed using finite element method(FEM). And it was fabricated with strain-gages, then, its characteristic test was carried out. As a result, the maximum interference error is less than 2.43 %.

병렬판구조를 이용한 3분력 로드셀 감지부의 설계 (Design of sensing element for 3-component load cell using parallel plate structure)

  • 김갑순;강대임;정수연;주진원
    • 대한기계학회논문집A
    • /
    • 제21권11호
    • /
    • pp.1871-1884
    • /
    • 1997
  • This paper describes the design process of a 3-component load cell with a multiple parallel plate structure which may be used to measure transverse forces and twisting moment simultaneously. Also we have derived equations to predict the bending strains on the surface of the beams in the multiple parallel plate structure under transverse force or twisting moment. It reveals that the bending strains calculated from the derived equations are in good agreement with the results from finite element analysis and experiment. Also we have evaluated the rated output and interference error of each component, which can be efficiently used to design a 3-component load cell with a multiple parallel plate structure.

미지물체를 안전하게 잡기 위한 6축 로봇손가락 힘/모멘트센서의 개발 (Development of a 6-axis Robot's Finger Force/Moment Sensor for Stably Grasping an Unknown Object)

  • 김갑순
    • 한국정밀공학회지
    • /
    • 제20권7호
    • /
    • pp.105-113
    • /
    • 2003
  • This paper describes the development of a 6-axis robot's finger force/moment sensor, which measures forces Fx, Fy, Fz, and moments Mx, My, Mz simultaneously, for stably grasping an unknown object. In order to safely grasp an unknown object using the robot's gripper, it should measure the force in the gripping direction and the force in the gravity direction, and perform the force control using the measured forces. Thus, the robot's gripper should be composed of 6-axis robot's finger force/moment sensor that can measure forces Fx, Fy, Fz, and moments Mx, My, Mz simultaneously. In this paper, the 6-axis robot's finger force/moment sensor for measuring forces Fx, Fy, Fz, and moments Mx, My, Mz simultaneously was newly modeled using several parallel-plate beams, designed, and fabricated. The characteristic test of made sensor was performed. and the result shows that interference errors of the developed sensor are less than 3%. Also, Robot's gripper with the 6-axis robot's finger force/moment sensor for the characteristic test of force control was manufactured, and the characteristic test for grasping an unknown object was performed using it. The fabricated gripper could grasp an unknown object stably. Thus, the developed 6-axis robot's finger force/moment sensor may be used for robot's gripper.

연결발화에서 마비말화자의 음질 특성 (Voice Quality of Dysarthric Speakers in Connected Speech)

  • 서인효;성철재
    • 말소리와 음성과학
    • /
    • 제5권4호
    • /
    • pp.33-41
    • /
    • 2013
  • This study investigated the perceptual and cepstral/spectral characteristics of phonation and their relationships in dysarthria in connected speech. Twenty-two participants were divided into two groups; the eleven dysarthric speakers were paired with matching age and gender healthy control participants. A perceptual evaluation was performed by three speech pathologists using the GRBAS scale to measure the cepstrual/spectral characteristics of phonation between the two groups' connected speech. Correlations showed dysarthric speakers scored significantly worse (with a higher rating) with severities in G (overall dysphonia grade), B (breathiness), and S (strain), while the smoothed prominence of the cepstral peak (CPPs) was significantly lower. The CPPs were significantly correlated with the perceptual ratings, including G, B, and S. The utility of CPPs is supported by its high relationship with perceptually rated dysphonia severity in dysarthric speakers. The receiver operating characteristic (ROC) analysis showed that the threshold of 5.08 dB for the CPPs achieved a good classification for dysarthria, with 63.6% sensitivity and the perfect specificity (100%). Those results indicate the CPPs reliably distinguished between healthy controls and dysarthric speakers. However, the CPP frequency (CPP F0) and low-high spectral ratio (L/H ratio) were not significantly different between the two groups.

스마트 3축 힘센서 설계 (Design of Smart Three-Axis Force Sensor)

  • 이경준;김현민;김갑순
    • 제어로봇시스템학회논문지
    • /
    • 제22권3호
    • /
    • pp.226-232
    • /
    • 2016
  • This paper describes the design of a smart three-axis force sensor for measuring forces Fx, Fy and Fz. The smart three-axis force sensor is composed of a three-axis force sensor, a force-measuring device, housing and a cover, where the three-axis force sensor and the force-measuring device are inside the housing and the cover. The measuring device measures forces Fx, Fy and Fz from the three-axis force sensor, and calculates the resultant force using the measured forces, and then sends the resultant force and forces to a PC or other controller using RS-485 communication. The repeatability error and the non-linearity error of the smart three-axis force sensor are less than 0.03%, and the interference error of the sensor is less than 0.87%. It is thought that the sensor can be used for measuring forces in a robot, automatic systems and so on.

로봇의 그리퍼 제작을 위한 6 축 로봇손가락 힘/모멘트센서의 개발 (Development of a 6-axis robot's finger force/moment sensor for making a robot's gripper)

  • 김갑순;이헌두;박인철;손영훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.758-763
    • /
    • 2003
  • This paper describes the development of a 6-axis robot's finger force/moment sensor, which measures forces Fx, Fy, Fz, and moments Mx, My, Mz simultaneously, for making a robot's gripper. In order to safely grasp and unknown object using the robot's gripper, it should measure the force in the gripping direction and the force in the gravity direction, and perform the force control using the measured forces. Thus, the robot's gripper should be composed of 6-axis robot's finger force/moment sensor that can measure forces Fx, Fy, Fz, and moments Mx, My, Mz simultaneously. In this paper, the 6-axis robot's finger force/moment sensor for measuring forces Fx, Fy, Fz, and moments Mx, My, Mz simultaneously was newly modeled using several parallel-plate beams, designed, and fabricated. The characteristic test of made sensor was performed. Also, Robot's gripper with the 6-axis robot's finger force/moment sensor for the characteristic test of force control was manufactured, and the characteristic test for grasping an unknown object was performed using it.

  • PDF

로봇 손가락용 소형 6축 힘/모멘트센서 개발 (Development of a small 6-axis force/moment sensor for robot's finger)

  • 김갑순;이상호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.490-493
    • /
    • 2003
  • This paper describes the development of a small 6-axis force/moment sensor for robot's finger, which measures forces Fx. Fy, Fz, and moments Mx, My, Mz simultaneously. In order to safely grasp an unknown object using the robot's gripper, and accurately perceive the position of it in the gripper, it should measure the force in the gripping direction, the force in the gravity direction and the moments each direction. and perform the control using the measured forces and moments. Thus, the robot's gripper should be composed of 6-axis force/moment sensor that can measure forces Fx, Fy, Fz, and moments Mx, My. Mz simultaneously. In this paper, the small 6-axis force/moment sensor for measuring forces Fx, Fy, Fz, and moments Mx, My, Mz simultaneously was newly modeled using several parallel-plate beams, designed, and fabricated. The characteristic test of made sensor was performed, and the result shows that interference errors or the developed sensor are less than 3%. Thus, the developed small 6-axis force/moment sensor may be used for robot's gripper.

  • PDF

기계적합금화로 제조된 Al-4Mg기 합금의 고온 기계적성질 (Elevared Temperature Mechanical Properties of Mechanically Alloyed Al-4Mg Alloys)

  • 이용각;전채홍;권숙인;연윤모
    • 열처리공학회지
    • /
    • 제11권3호
    • /
    • pp.168-176
    • /
    • 1998
  • The mechanical properties of mechanically alloyed Al-4wt%Mg alloys dispersed with $MgAl_2O_4$ dispersoilds at room and elevated temperatures were investigated. The powders in steady state during mechanical alloying consisted of Mg-supersatu rated Al solid solution and $Al_4C_3$ which resulted from the reaction of Al with C in process control agent (methanol). The hot-extruded materials consisted of uniformly dispersed fine $MgAl_2O_4$, ${\gamma}-Al_2O_3$, $Al_2O_3$ and matrix with extremly fine substructure. Tensile specimens prepared from the extruded bars were tested at room temperature to $400^{\circ}C$ under different strain rates. The tensile strength of alloys at room temperature ranged from 500 to 594MPa. At elevated temperatures, the tensile strengths and elongations decreased with increasing temperature. Adding 3% $MgAl_2O_4$ to Al-4wt%Mg increased the tensile strength of 50MPa at rowan temperature and 20MPa at $400^{\circ}C$.

  • PDF

중증뇌졸중환자의 발목재활로봇을 위한 힘센서 설계 (Design of Force Sensors for the Ankle Rehabilitation Robot of Severe Stroke Patients)

  • 김한솔;김갑순
    • 센서학회지
    • /
    • 제25권2호
    • /
    • pp.148-154
    • /
    • 2016
  • This paper describes the design and fabrication of a two-axis force/torque sensor and an one-axis force sensor with parallel plate beams(PPSs) for measuring forces and torque in an ankle rehabilitation exercise using by a lower rehabilitation robot. The two-axis force/torque sensor is composed of a Fy force sensor and Tz torque sensor and the force sensor detects x direction force. The two-axis force/torque sensor and one-axis force sensor were designed using by FEM(Finite Element Method), and manufactured using strain-gages. The characteristics experiment of the two-axis force/torque sensor and one-axis force sensor were carried out respectively. As a test results, the interference error of the two-axis force/torque sensor was less than 1.56%, the repeatability error and the non-linearity of the two-axis force/torque sensor were less than 0.03% respectively, and the repeatability error and the non-linearity of the one-axis force sensor were less than 0.03% and 0.02% respectively.