• Title/Summary/Keyword: rat brain imaging

Search Result 34, Processing Time 0.01 seconds

Cerebral Infarction Model in Rat on Magnetic Resonance Imaging (흰 쥐의 뇌경색 병변에 대한 자기공명영상)

  • Jung, Ji-Sung
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.13 no.2
    • /
    • pp.55-58
    • /
    • 2011
  • It is important to study using experimental animals for research about stroke. Magnetic Resonance Imaging(MRI) is avaluable diagnosticmethods for stroke diagnosis. The purpose of this research is to know the Magnetic Resonance Imaging(MRI) and histopathological characteristics findings after induction of photothrombotic cerebral infarction in rat brain. Male Sprague-Dawley rats were anesthetized, Rose Bengal dye(20 mg/kg) was intravenously injected. The right sensonrimotor cortex of rat brain was exposed to cold light of 7 mm diameter at a position of 1 mm anterior and 3.5 mm lateral to bregma for 20 min. The post-infarction effects were monitored by T1 weighted and T2 weighted images of brain MRI. Histopathological changes were observed after Hematoxylin & Eosin staining. The lesion appeared clearly high signal intensity area on T2 weighted images(the major axis $7.04{\pm}0.11$ mm, the minor axis $3.08{\pm}0.04$ mm) and also H&E staining was same result. In conclusion, MRI was avaluable diagnostic methods for diagnosis and serial changes of stroke.

  • PDF

Effects of Size and Permittivity of Rat Brain on SAR Values at 900 MHz and 1,800 MHz

  • Hyun Jong-Chul;Oh Yi-Sok
    • Journal of electromagnetic engineering and science
    • /
    • v.6 no.1
    • /
    • pp.47-52
    • /
    • 2006
  • The objective of this study is to evaluate the effects of size and permittivity on the specific absorption rate(SAR) values of rat brains during microwave exposure at mobile phone frequency bands. A finite difference time domain (FDTD) technique with perfect matching layer(PML) absorbing boundaries is used for this evaluation process. A color coded digital image of the Sprague Dawley(SD) rat based on magnetic resonance imaging(MRI) is used in FDTD calculation with appropriate permittivity values corresponding to different tissues for 3, 4, 7, and 10 week old rats. This study is comprised of three major parts. First, the rat model structure is scaled uniformly, i.e., the rat size is increased without change in permittivity. The simulated SAR values are compared with other experimental and numerical results. Second, the effect of permittivity on SAR values is examined by simulating the microwave exposure on rat brains with various permittivity values for a fixed rat size. Finally, the SAR distributions in depth, and the brain-averaged SAR and brain 1 voxel peak SAR values are computed during the microwave exposure on a rat model structure when both size and permittivity have varied corresponding to different ages ranging from 3 to 10 weeks. At 900 MHz, the simulation results show that the brain-averaged SAR values decreased by about 54 % for size variation from the 3 week to the 10 week-old rat model, while the SAR values decreased only by about 16 % for permittivity variation. It is found that the brain averaged SAR values decreased by about 63 % when the variations in size and permittivity are taken together. At 1,800 MHz, the brain-averaged SAR value is decreased by 200 % for size variation, 9.7 % for permittivity variation, and 207 % for both size and permittivity variations.

Investigation of a Photothrombosis Inducing System for an Observation of Transient Variations in an in vivo Rat Brain

  • Oh, Sung Suk;Park, Hye Jin;Min, Han Sol;Kim, Sang Dong;Bae, Seung Kuk;Kim, Jun Sik;Ryu, Rae-Hyung;Kim, Jong Chul;Kim, Sang Hyun;Lee, Seong-jun;Kang, Bong Keun;Choi, Jong-ryul;Sohn, Jeong-woo
    • Current Optics and Photonics
    • /
    • v.2 no.6
    • /
    • pp.499-507
    • /
    • 2018
  • For the spatiotemporally aligned observation of photothrombosis induction and transient variations of in vivo brain stroke, we developed a novel photothrombosis inducing system compatible to a magnetic resonance imaging (MRI) system using nonmagnetic stereotaxic equipment. From the spatial point of view, the system provides a more reliable level of reproducibility of the photothrombosis in each brain. From the temporal point of view, from T1- and T2-weighted in vivo MR (magnetic resonance) images, the transient variations such as incidence, location, and size of the thrombosis are measured quantitatively. In addition, the final variation is observed in the ex vivo brain by TTC (Triphenyltetrazolium chloride) staining based on histological assay and utilized for the verification of the MR images. From the experimental result of the rat brain, the proposed system shows more reliable characteristics for transient variations of brain strokes.

Optimization of Scan Parameters for in vivo Hyperpolarized Carbon-13 Magnetic Resonance Spectroscopic Imaging

  • Nguyen, Nguyen Trong;Rasanjala, Onila N.M.D.;Park, Ilwoo
    • Investigative Magnetic Resonance Imaging
    • /
    • v.26 no.2
    • /
    • pp.125-134
    • /
    • 2022
  • Purpose: The aim of this study was to investigate the change in signal sensitivity over different acquisition start times and optimize the scanning window to provide the maximal signal sensitivity of [1-13C]pyruvate and its metabolic products, lactate and alanine, using spatially localized hyperpolarized 3D 13C magnetic resonance spectroscopic imaging (MRSI). Materials and Methods: We acquired 3D 13C MRSI data from the brain (n = 3), kidney (n = 3), and liver (n = 3) of rats using a 3T clinical scanner and a custom RF coil after the injection of hyperpolarized [1-13C]pyruvate. For each organ, we obtained three consecutive 3D 13C MRSI datasets with different acquisition start times per animal from a total of three animals. The mean signal-to-noise ratios (SNRs) of pyruvate, lactate, and alanine were calculated and compared between different acquisition start times. Based on the SNRs of lactate and alanine, we identified the optimal acquisition start timing for each organ. Results: For the brain, the acquisition start time of 18 s provided the highest mean SNR of lactate. At 18 s, however, the lactate signal predominantly originated from not the brain, but the blood vessels; therefore, the acquisition start time of 22 s was recommended for 3D 13C MRSI of the rat brain. For the kidney, all three metabolites demonstrated the highest mean SNR at the acquisition start time of 32 s. Similarly, the acquisition start time of 22 s provided the highest SNRs for all three metabolites in the liver. Conclusion: In this study, the acquisition start timing was optimized in an attempt to maximize metabolic signals in hyperpolarized 3D 13C MRSI examination with [1-13C] pyruvate as a substrate. We investigated the changes in metabolic signal sensitivity in the brain, kidney, and liver of rats to establish the optimal acquisition start time for each organ. We expect the results from this study to be of help in future studies.

Classification of Fiber Tracts Changed by Nerve Injury and Electrical Brain Stimulation Using Machine Learning Algorithm in the Rat Brain (신경 손상과 전기 뇌 자극에 의한 흰쥐의 뇌 섬유 경로 변화에 대한 기계학습 판별)

  • Sohn, Jin-Hun;Eum, Young-Ji;Cheong, Chaejoon;Cha, Myeounghoon;Lee, Bae Hwan
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.701-702
    • /
    • 2021
  • The purpose of the study was to identify fiber changes induced by electrical stimulation of a certain neural substrate in the rat brain. In the stimulation group, the peripheral nerve was injured and the brain area associated to inhibit sensory information was electrically stimulated. There were sham and sham stimulation groups as controls. Then high-field diffusion tensor imaging (DTI) was acquired. 35 features were taken from the DTI measures from 7 different brain pathways. To compare the efficacy of the classification for 3 animal groups, the linear regression analysis (LDA) and the machine learning technique (MLP) were applied. It was found that the testing accuracy by MLP was about 77%, but that of accuracy by LDA was much higher than MLP. In conclusion, machine learning algorithm could be used to identify and predict the changes of the brain white matter in some situations. The limits of this study will be discussed.

  • PDF

Synthesis and In vivo Evaluation of 5-Methoxy-2-(phenylethynyl)quinoline (MPEQ) and [11C]MPEQ Targeting Metabotropic Glutamate Receptor 5 (mGluR5)

  • Kim, Ji Young;Son, Myung-Hee;Choi, Kihang;Baek, Du-Jong;Ko, Min Kyung;Lim, Eun Jeong;Pae, Ae Nim;Keum, Gyochang;Lee, Jae Kyun;Cho, Yong Seo;Choo, Hyunah;Lee, Youn Woo;Moon, Byung Seok;Lee, Byung Cheol;Lee, Ho-Young;Min, Sun-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2304-2310
    • /
    • 2014
  • The synthesis and in vivo evaluation of 5-methoxy-2-(phenylethynyl)quinoline (MPEQ) 3 as a potential mGluR5 selective radioligand is described. We have identified MPEQ 3 exhibiting the analgesic effect in the neuropathic pain animal model. The effect of mGluR5 on neuronal activity in rat brain was evaluated through FDG/PET imaging in the presence of MPEQ 3. In addition, the PET study of [$^{11}C$]MPEQ 3 proved that accumulation of [$^{11}C$]MPEQ 3 in rat brain was correlated to the localization of the mGluR5.

Blood-Brain Barrier Experiments with Clinical Magnetic Resonance Imaging and an Immunohistochemical Study

  • Park, Jun-Woo;Kim, Hak-Jin;Song, Geun-Sung;Han, Hyung-Soo
    • Journal of Korean Neurosurgical Society
    • /
    • v.47 no.3
    • /
    • pp.203-209
    • /
    • 2010
  • Objective : The purpose of study was to evaluate the feasibility of brain magnetic resonance (MR) images of the rat obtained using a 1.5T MR machine in several blood-brain barrier (BBB) experiments. Methods : Male Sprague-Dawley rats were used. MR images were obtained using a clinical 1.5T MR machine. A microcatheter was introduced via the femoral artery to the carotid artery. Normal saline (group 1, n = 4), clotted autologous blood (group 2, n = 4), triolein emulsion (group 3, n = 4), and oleic acid emulsion (group 4, n = 4) were infused into the carotid artery through a microcatheter. Conventional and diffusion-weighted images, the apparent coefficient map, perfusion-weighted images, and contrast-enhanced MR images were obtained. Brain tissue was obtained and triphenyltetrazolium chloride (TTC) staining was performed in group 2. Fluorescein isothiocyanate (FITC)-labeled dextran images and endothelial barrier antigen (EBA) studies were performed in group 4. Results : The MR images in group 1 were of good quality. The MR images in group 2 revealed typical findings of acute cerebral infarction. Perfusion defects were noted on the perfusion-weighted images. The MR images in group 3 showed vasogenic edema and contrast enhancement, representing vascular damage. The rats in group 4 had vasogenic edema on the MR images and leakage of dextran on the FITC-labeled dextran image, representing increased vascular permeability. The immune reaction was decreased on the EBA study. Conclusion : Clinical 1.5T MR images using a rat depicted many informative results in the present study. These results can be used in further researches of the BBB using combined clinical MR machines and immunohistochemical examinations.

Reparative, Neuroprotective and Anti-neurodegenerative Effects of Granulocyte Colony Stimulating Factor in Radiation-Induced Brain Injury Model

  • Gokhan Gurkan;Ozum Atasoy;Nilsu Cini;Ibrahim Halil Sever;Bahattin Ozkul;Gokhan Yaprak;Cansin Sirin;Yigit Uyanikgil;Ceren Kizmazoglu;Mumin Alper Erdogan;Oytun Erbas
    • Journal of Korean Neurosurgical Society
    • /
    • v.66 no.5
    • /
    • pp.511-524
    • /
    • 2023
  • Objective : This animal model aimed to compare the rat group that received brain irradiation and did not receive additional treatment (only saline) and the rat group that underwent brain irradiation and received Granulocyte colony stimulating factor (G-CSF) treatment. In addition, the effects of G-CSF on brain functions were examined by magnetic resonance (MR) imaging and histopathologically. Methods : This study used 24 female Wistar albino rats. Drug administration (saline or G-CSF) was started at the beginning of the study and continued for 15 days after whole-brain radiotherapy (WBRT). WBRT was given on day 7 of the start of the study. At the end of 15 days, the behavioral tests, including the three-chamber sociability test, open field test, and passive avoidance learning test, were done. After the behavioral test, the animals performed the MR spectroscopy procedure. At the end of the study, cervical dislocation was applied to all animals. Results : G-CSF treatment positively affected the results of the three-chamber sociability test, open-space test and passive avoidance learning test, cornu Ammonis (CA) 1, CA3, and Purkinje neuron counts, and the brain levels of brain-derived neurotrophic factor and postsynaptic density protein-95. However, G-CSF treatment reduced the glial fibrillary acidic protein immunostaining index and brain levels of malondialdehyde, tumor necrosis factor-alpha, nuclear factor kappa-B, and lactate. In addition, on MR spectroscopy, G-CSF had a reversible effect on brain lactate levels. Conclusion : In this first designed brain irradiation animal model, which evaluated G-CSF effects, we observed that G-CSF had reparative, neuroprotective and anti-neurodegenerative effects and had increased neurotrophic factor expression, neuronal counts, and morphology changes. In addition, G-CSF had a proven lactate-lowering effect in MR spectroscopy and brain materials.