Background: Rare ginsenosides in Panax quinquefolius L. have strong bioactivities. The fact that it is hard to obtain large amounts of rare ginsenosides seriously restricts further research on these compounds. An easy, fast, and efficient method to obtain different kinds of rare ginsenosides simultaneously and to quantify each one precisely is urgently needed. Methods: Microwave-assisted extraction (MAE) was used to extract nine kinds of rare ginsenosides from P. quinquefolius L. In this article, rare ginsenosides [20(S)-Rh1, 20(R)-Rh1, Rg6, F4, Rk3, 20(S)-Rg3, 20(R)-Rg3, Rk1, and Rg5] were identified by high performance liquid chromatography (HPLC)-electrospray ionization-mass spectrometry. The quantity information of rare ginsenosides was analyzed by HPLC-UV at 203 nm. Results: The optimal conditions for MAE were using water as solvent with the material ratio of 1:40 (w/v) at a temperature of $145^{\circ}C$, and extracting for 15 min under microwave power of 1,600 W. Seven kinds of rare ginsenosides [20(S)-Rh1, 20(R)-Rh1, Rg6, F4, Rk3, Rk1, and Rg5] had high extraction yields, but those of 20(S)-Rg3 and 20(R)-Rg3 were lower. Compared with the conventional method, the extraction yields of the nine rare ginsenosides were significantly increased. Conclusion: The results indicate that rare ginsenosides can be extracted effectively by MAE from P. quinquefolius L. in a short time. Microwave radiation plays an important role in MAE. The probable generation process of rare ginsenosides is also discussed in the article. It will be meaningful for further investigation or application of rare ginsenosides.
Background: The biological activity and pharmacological effects of rare ginsenosides have been proven to be superior to those of the major ginsenosides, but they are rarely found in ginseng. Methods: Ginsenoside Rb1 was chemically transformed with the involvement of methanol molecules by a synthesized heterogeneous catalyst 12-HPW@MeSi, which was obtained by the immobilization of 12-phosphotungstic acid on a mesoporous silica framework. High-performance liquid chromatography coupled with mass spectrometry was used to identify the transformation products. Results: A total of 18 transformation products were obtained and identified. Methanol was found to be involved in the formation of 8 products formed by the addition of methanol molecules to the C-24 (25), C-20 (21) or C-20 (22) double bonds of the aglycone. The transformation pathways of ginsenoside Rb1 involved deglycosylation, addition, elimination, cycloaddition, and epimerization reactions. These pathways could be elucidated in terms of the stability of the generated carbenium ion. In addition, 12-HPW@MeSi was able to maintain a 60.5% conversion rate of Rb1 after 5 cycles. Conclusion: Tandem and high-resolution mass spectrometry analysis allowed rapid and accurate identification of the transformation products through the characteristic fragment ions and neutral loss. Rare ginsenosides with methoxyl groups grafted at the C-25 and C-20 positions were obtained for the first time by chemical transformation using the composite catalyst 12-HPW@MeSi, which also enabled cyclic heterogeneous transformation and facile centrifugal separation of ginsenosides. This work provides an efficient and recyclable strategy for the preparation of rare ginsenosides with the involvement of organic molecules.
Background: Ginsenosides, which have strong biological activities, can be divided into polar or less-polar ginsenosides. Methods: This study evaluated the phytochemical diversity of the saponins in Panax ginseng (PG) root, American ginseng (AG) root, and Panax notoginseng (NG) root; the stem-leaves from Panax ginseng (SPG) root, American ginseng (SAG) root, and Panax notoginseng (SNG) root as well as the saponins obtained following heating and acidification [transformed Panax ginseng (TPG), transformed American ginseng (TAG), transformed Panax notoginseng (TNG), transformed stem-leaves from Panax ginseng (TSPG), transformed stem-leaves from American ginseng (TSAG), and transformed stem-leaves from Panax notoginseng (TSNG)]. The diversity was determined through the simultaneous quantification of the 16 major ginsenosides. Results: The content of ginsenosides in NG was found to be higher than those in AG and PG, and the content in SPG was greater than those in SNG and SAG. After transformation, the contents of polar ginsenosides in the raw saponins decreased, and contents of less-polar compounds increased. TNG had the highest levels of ginsenosides, which is consistent with the transformation of ginseng root. The contents of saponins in the stem-leaves were higher than those in the roots. The transformation rate of SNG was higher than those of the other samples, and the loss ratios of total ginsenosides from NG (6%) and SNG (4%) were the lowest among the tested materials. In addition to the conversion temperature, time, and pH, the crude protein content also affects the conversion to rare saponins. The proteins in Panax notoginseng allowed the highest conversion rate. Conclusion: Thus, the industrial preparation of less-polar ginsenosides from SNG is more efficient and cheaper.
The ginsenoside Rh2 has strong anti-cancer, anti-inflammatory, and anti-diabetic effects. However, the application of ginsenoside Rh2 is restricted because of the small amounts found in Korean white and red ginsengs. To enhance the production of ginsenoside Rh2-MIX (comprising 20(S)-Rh2, 20(R)-Rh2, Rk2, and Rh3 as a 10-g unit) with high specificity, yield, and purity, a new combination of enzymatic conversion using the commercial enzyme Viscozyme L followed by acid treatment was developed. Viscozyme L treatment at pH 5.0 and $50^{\circ}C$ was used initially to transform the major ginsenosides Rb1, Rb2, Rc, and Rd into ginsenoside F2, followed by acid-heat treatment using citric acid 2% (w/v) at pH 2.0 and $121^{\circ}C$ for 15 min. Scale-up production in a 10-L jar fermenter, using 60 g of the protopanaxadiol-type ginsenoside mixture from ginseng roots, produced 24 g of ginsenoside Rh2-MIX. Using 2 g of Rh2-MIX, 131 mg of 20(S)-Rh2, 58 mg of 20(R)-Rh2, 47 mg of Rk2, and 26 mg of Rh3 were obtained at over 98% chromatographic purity. Then, the anti-cancer effect of the four purified ginsenosides was investigated on B16F10, MDA-MB-231, and HuH-7 cell lines. As a result, these four rare ginsenosides markedly inhibited the growth of the cancer cell lines. These results suggested that rare ginsenoside Rh2-MIX could be exploited to prepare an anti-cancer supplement in the functional food and pharmaceutical industries.
Background: Ginsenosides are known as the principal pharmacological active constituents in Panax medicinal plants such as Asian ginseng, American ginseng, and Notoginseng. Some ginsenosides, especially the 20(R) isomers, are found in trace amounts in natural sources and are difficult to chemically synthesize. The present study provides an approach to produce such trace ginsenosides applying biotransformation through Escherichia coli modified with relevant genes. Methods: Seven uridine diphosphate glycosyltransferase (UGT) genes originating from Panax notoginseng, Medicago sativa, and Bacillus subtilis were synthesized or cloned and constructed into pETM6, an ePathBrick vector, which were then introduced into E. coli BL21star (DE3) separately. 20(R)-Protopanaxadiol (PPD), 20(R)-protopanaxatriol (PPT), and 20(R)-type ginsenosides were used as substrates for biotransformation with recombinant E. coli modified with those UGT genes. Results: E. coli engineered with $GT95^{syn}$ selectively transfers a glucose moiety to the C20 hydroxyl of 20(R)-PPD and 20(R)-PPT to produce 20(R)-CK and 20(R)-F1, respectively. GTK1- and GTC1-modified E. coli glycosylated the C3-OH of 20(R)-PPD to form 20(R)-Rh2. Moreover, E. coli containing $p2GT95^{syn}K1$, a recreated two-step glycosylation pathway via the ePathBrich, implemented the successive glycosylation at C20-OH and C3-OH of 20(R)-PPD and yielded 20(R)-F2 in the biotransformation broth. Conclusion: This study demonstrates that rare 20(R)-ginsenosides can be produced through E. coli engineered with UTG genes.
In this study, white ginseng was used as the raw material, which was fermented with Paecilomyces hepiali through solid culture medium, to produce ginsenosides with modified chemical composition. The characteristic chemical markers of the products thus produced were investigated using rapid resolution liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (RRLC-QTOF-MS). Chemical profiling data were obtained, which were then subjected to multivariate statistical analysis for the systematic comparison of active ingredients in white ginseng and fermented ginseng to understand the beneficial properties of ginsenoside metabolites. In addition, the effects of these components on biological activity were investigated to understand the improvements in the phagocytic function of macrophages in zebrafish. According to the established RRLC-QTOF-MS chemical profiling, the contents in ginsenosides of high molecular weight, especially malonylated protopanaxadiol ginsenosides, were slightly reduced due to the fermentation, which were hydrolyzed into rare and minor ginsenosides. Moreover, the facilitation of macrophage phagocytic function in zebrafish following treatment with different ginseng extracts confirmed that the fermented ginseng is superior to white ginseng. Our results prove that there is a profound change in chemical constituents of ginsenosides during the fermentation process, which has a significant effect on the biological activity of these compounds.
Cancer stem cells (CSCs) are a rare subpopulation of cancer cells that exhibit stem cell-like characteristics, including self-renewal and differentiation in a multi-stage lineage state via symmetric or asymmetric division, causing tumor initiation, heterogeneity, progression, and recurrence and posing a major challenge to current anticancer therapy. Despite the importance of CSCs in carcinogenesis and cancer progression, currently available anticancer therapeutics have limitations for eradicating CSCs. Moreover, the efficacy and therapeutic windows of currently available anti-CSC agents are limited, suggesting the necessity to optimize and develop a novel anticancer agent targeting CSCs. Ginseng has been traditionally used for enhancing immunity and relieving fatigue. As ginseng's long history of use has demonstrated its safety, it has gained attention for its potential pharmacological properties, including anticancer effects. Several studies have identified the bioactive principles of ginseng, such as ginseng saponin (ginsenosides) and non-saponin compounds (e.g., polysaccharides, polyacetylenes, and phenolic compounds), and their pharmacological activities, including antioxidant, anticancer, antidiabetic, antifatigue, and neuroprotective effects. Notably, recent reports have shown the potential of ginseng-derived compounds as anti-CSC agents. This review investigates the biology of CSCs and efforts to utilize ginseng-derived components for cancer treatment targeting CSCs, highlighting their role in overcoming current therapeutic limitations.
Seun Eui Kim;Myoung-Hoon Lee;Hye-Myoung Jang;Wan-Taek Im;Joontaik Lee;Sang-Hwan Kim;Gwang Joo Jeon
Journal of Animal Reproduction and Biotechnology
/
v.38
no.3
/
pp.131-142
/
2023
Background: This study has mainly focused on finding pharmacological effects of ginsenosides that can reduce the unwanted side effects of the cytotoxic anticancer drugs and are highly effective on prostate cancer, colorectal cancer, liver cancer, hormone-dependent breast cancer, triple-negative breast cancer, and brain cancer (neuroblastoma). Methods: Minor and rare ginsenosides (GS) of Rh2 which have a high absorption ability and excellent pharmacological actions were treated with the 6 different types of cancer cell lines and their anticancer activities were investigated by analyzing gene expressions associated with various cancers through qPCR and other relevant methods. Results: In cancer cells exposed to Rh2, cell viability and cell migration were reduced, and apoptosis was induced. Each cancer cell was divided into three groups according to the cell proliferation response by Rh2; 1) A group in which the cell viability decreases inversely to an increase in Rh2 treatment concentration; 2) A group in which the cell viability rapidly decreases in Rh2 treatment above a certain level of concentration; 3) A group in which the cell viability was not suppressed below 20-30% even with 100 μL of Rh2, the highest concentration used in this study. Conclusions: It was shown that Rh2 has a significant effect on inhibiting the proliferation of prostate cancer cells and hormone-dependent breast cancer cells.
This study was carried out to know the effect of seed position on the size, contents of ginsenosides, free sugars, and fatty acids in ginseng seeds. Seed positions were classified by the three portions as center, middle and border in a seed cluster. Seed weight at center was light remarkably in comparison with those of seeds of at border and middle. The weight of embryo plus endosperm was in same tendency as seed weight. Percentage of single-seeded berry was smaller than that of the double-seeded, and the triple-seeded was rare. The percentage of the single-seeded increased from the border to the center. Size of the single -seeded seed was smaller than that of the double- seeded. Rate of dehiscence did not differ among different seed positions. The major ginsenosides in seed were Re, Rb$_1$, and Rb$_2$. The contents of Rb$_2$ and total saponin were highest in border, least in center, but reversed in Re and Rd. Major free sugars in seed were sucrose and glucose. The sucrose content was gradually decreased according to the seed position from border to center. Major fatty acids in the seed were oleic and linoleic acid. Contents of palmitic and linolenic acid were different according to the seed position.
Ginseng has been used as a popular herbal medicine in East Asia for at least two millennia. However, 20(R)-ginseng saponins, one class of important rare ginsenosides, are rare in natural products. 20(R)-ginseng saponins are generally prepared by chemical epimerization and microbial transformation from 20(S)-isomers. The C20 configuration of 20(R)-ginseng saponins are usually determined by 13C NMR and X-ray single-crystal diffraction. 20(R)-ginseng saponins have antitumor, antioxidative, antifatigue, neuroprotective, and osteoclastogenesis inhibitory effects, among others. Owing to the chemical structure and pharmacological and stereoselective properties, 20(R)-ginseng saponins have attracted a great deal of attention in recent years. In this study, the discovery, identification, chemical epimerization, microbial transformation, pharmacological activities, and metabolism of 20(R)-ginseng saponins are summarized.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.