• Title/Summary/Keyword: rapid sand filtration

Search Result 27, Processing Time 0.023 seconds

The study of manganese removal mechanism in aeration-sand filtration process for treating bank filtered water (강변여과수 처리를 위한 포기-모래여과공정에서 망간제거 기작에 관한 연구)

  • Choi, Seung-Chul;Kim, Se-Hwan;Yang, Hae-Jin;Lim, Jae-Lim;Wang, Chang-Keun;Jung, Kwan-Sue
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.3
    • /
    • pp.341-349
    • /
    • 2010
  • It is well known that manganese is hard to oxidize under neutral pH condition in the atmosphere while iron can be easily oxidized to insoluble iron oxide. The purpose of this study is to identify removal mechanism of manganese in the D water treatment plant where is treating bank filtered water in aeration and rapid sand filtration. Average concentration of iron and manganese in bank filtered water were 5.9 mg/L and 3.6 mg/L in 2008, respectively. However, their concentration in rapid sand filtrate were only 0.11 mg/L and 0.03 mg/L, respectively. Most of the sand was coated with black colored manganese oxide except surface layer. According to EDX analysis of sand which was collected in different depth of sand filter, the content of i ron in the upper part sand was relatively higher than that in the lower part. while manganese content increased with a depth. The presence of iron and manganese oxidizing bacteria have been identified in sand of rapid sand filtration. It is supposed that these bacteria contributed some to remove iron and manganese in rapid sand filter. In conclusion, manganese has been simultaneously removed by physicochemical reaction and biological reaction. However, it is considered that the former reaction is dominant than the latter. That is, Mn(II) ion is rapidly adsorbed on ${\gamma}$-FeOOH which is intermediate iron oxidant and then adsorbed Mn(II) ion is oxidized to insoluble manganese oxide. In addition, manganese oxidation is accelerated by autocatalytic reaction of manganese oxide. The iron and manganese oxides deposited on the surface of the sand and then are aged with coating sand surface.

A Study on Efficient Simple Water Supply System in Rural Areas (농촌지역의 효율적인 간이 상수처리에 관한 연구)

  • 이홍근;백남원;백도현
    • Journal of Environmental Health Sciences
    • /
    • v.22 no.3
    • /
    • pp.103-115
    • /
    • 1996
  • The purpose of this study was to establish acceptable criteria for the design of simple water treatment plant in rural areas. To develop efficient simple water treatment methods for rural areas, water quality in the study areas was investigated and rapid and slow filtrations in pilot-scale were tested under various conditions. The main results of this study are as follows. It was found that the water qualities of the study areas exceed the drinking water standards, which implies that some treatments are required in rural areas. Treatment efficiencies of both rapid sand and dual-media (sand and anthracite) filtration without pre-treatment such as flocculation and sedimentation are very low, which were turned out to be unadequate for the rural areas. Treatment efficiencies of both vertical and horizontal slow filtration without chlorination are very high for consumed $KMnO_4, NH_3-N, NO_3-N$, turbidity, and very low for coliform and bacteria. Treatment efficiencies of both vertical and horizontal slow filtration with chlorination are very high over the most pollutants. A slow filtration with chlorination is efficient for the rural areas. An adequate depth of sand layer is over 60 cm. A horizontal filtration is more economical than a vertical filtration. A horizontal filtration can be operated for a relatively long periods of time without sand washing or replacement because clogging is removed by simple back-washing.

  • PDF

A Study on the Process Selection for Two-stage and Dual Media Filtration System for Improving Filtration Performance (여과 성능향상을 위한 이단이층 복합여과시스템의 공정선정 연구)

  • Song, Si Bum;Jo, Min;Nam, Sang Ho;Woo, Dal Sik
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.2
    • /
    • pp.203-214
    • /
    • 2007
  • This study aimed at researching the process selection for two-stage and dual media filtration system, as a technology substituting the existing sand filter without expanding the site when retrofitting an old filter bed or designing a new one. In order to select the process for optimum complex filtration system, three running conditions have been tested. Test results demonstrated that Run 3 in which the 1st stage was filled with anthracite and coarse sand, and the 2nd stage was filled up with activated carbon and fine sand reduced the head loss and the load of turbidity substances. Also, Run 3 showed better performance in removing TOC, particle counts, THMFP and HAAFP, compared to other two conditions. 99 % of Cryptosporidium was removed. Bisphenol-A was rarely removed from the 1st stage of coarse sand and 2nd stage of fine sand, but 99 % of it was removed from the 2nd stage of activated carbon. In conclusion, when it is required to retrofit an old rapid filter bed or design a new one for the purpose of improving filtration performance, the following two-stage and dual media filtration system is suggested: the 1st stage of filter bed needs to be filled up with coarse sand to remove turbidity as the pretreatment for extending duration of filtering, the top part of 2nd stage needs to be filled up with granular activated caron to remove dissolved organic matters and others as the main process, and finally the bottom part of 2nd stage needs to be filled up with fine sand as the finishing process.

Removal of High Concentration Manganese in 2-stage Manganese Sand Filtration (2단 망간모래여과에 의한 고농도 망간 처리)

  • Kim, Chung H.;Yun, Jong S.;Lim, Jae L.;Kim, Seong S.
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.4
    • /
    • pp.503-508
    • /
    • 2007
  • Small scale D-water treatment plant(WTP) where has slow sand filtration was using raw water containing high concentration of manganese (> 2mg/l). The raw water was pre-chlorinated for oxidation of manganese and resulted in difficulty for filtration. Thus, sometimes manganese concentration and turbidity were over the water quality standard. Two stage rapid manganese sand filtration pilot plant which can treat $200m^3/d$ was operated to solve manganese problem in D-WTP. The removal rate of manganese and turbidity were about 38% and 84%, respectively without pH control of raw water. However, when pH of raw water was controlled to average 7.9 with NaOH solution, the removal rate of manganese and turbidity increased to 95.0% and 95.5%, respectively and the water quality of filtrate satisfied the water quality standard. Manganese content in sand was over 0.3mg/g which is Japan Water Association Guideline. The content in upper filter was 5~10 times more than that of middle and lower during an early operation but the content in middle and lower filter was increased more and more with increase of operation time. This result means that the oxidized manganese was adsorbed well in sand. Rapid manganese sand filter was backwashed periodically. The water quality of backwash wastewater was improved by sedimentation. Thus, turbidity and manganese concentration decreased from 29.4NTU to 3.09NTU and from 1.7mg/L to 0.26mg/L, respectively for one day. In Jar test of backwash wastewater with PAC(Poly-aluminum chloride), optimum dosage was 30mg/L. Because the turbidity of filtrate was high as 0.76NTU for early 5 minute after backwash, filter-to-waste should be used after backwash to prevent poor quality water.

Effects of Mixing Condition and Filtration Velocity on Turbidity Removal in a Contact Roughing Filter (접촉여과방식 거친여과지에서 혼화조건과 여과속도가 고탁도 제거에 미치는 영향)

  • Park, Noh-Back;Park, Sang-Min;Hong, Jin-Ah;Jun, Hang-Bae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.3
    • /
    • pp.359-366
    • /
    • 2007
  • Slow sand filtrations have been widely used for water treatment in small communities, however their capacity is often limited by high turbidity in the raw water. For this reason, several pre-treatment facilities were required for a slow sand filter. Turbidity removal from the highly turbid raw water was investigated in roughing filters as a pre-treatment process. The roughing filters followed by rapid mixing tank were operated in the form of a contact filtration. In several jar tests, the predetermined optimum aluminium sulfate (alum) doses for turbid water of 30 and 120NTU were 30 and 50mg/L, respectively. At the optimum alum dose, physically optimum parameters including G value of $220sec^{-1}$ and rapid mixing time of 3 minutes were applied to the contact filtration system. Without addition of alum, the filtrate turbidity from the roughing filters, packed respectively with different media such as sand, porous diatomite ball and gravel, was in the range of 5~30NTU at filtration velocities of 30 and 50m/day. However, the application of a contact filtration to roughing filters showed stably lower filtrate turbidity below 1.0NTU at filtration velocity of 30 m/day. Although the filtration velocity increased to 50m/day, filtrate turbidity was still below 1.0NTU in both single and double layer roughing filters. At influent turbidity of 120NTU, the filtrate turbidity was over 5 NTU in the triple layer roughing filter, which shortened the filter run time. The flocs larger than $10{\mu}m$, formed in the rapid mixing tank, were almost captured through the roughing filter bed, while the almost flocs smaller than $10{\mu}m$ remained in filtrate.

A Demonstrative Operation of A Membrane Filtration System in Siheung Water Treatment Plant (시흥정수장 막여과시설 시범운영)

  • 김한승;김충환;김학철;윤재경;안효원
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.07a
    • /
    • pp.57-68
    • /
    • 2004
  • A demonstrative operation of a membrane system with its caparity of 3,600m$^3$/d was carried out using reservoir water as raw water for the application of membrane filtration system to drinking water treatment. The operation was undertaken at a constant flux of 0.9 m$^3$/m$^2$/d for three months. Backwashing with NaClO of 3 ppm was allowed for 30 seconds every 20 minutes of filtration. Physical cleaning was introduced after 69 times of filtration/backwashing cycle with air-scrubbing and backwashing for 1 minute, and flushing for 2 minutes. In this study, water treatment performance was investigated compared with the existing rapid sand filtration process. The membrane system was operated with no significant problems during the test period. Higher water quality was obtained in the membrane filtration than in the rapid sand filtration in terms of particulate matters such as turbidity and microbes. Although the finished water of the membrane filtration contained slightly higher concentration in dissolved matters than that of the conventional one, it met the drinking water standard. The demonstrative operation showed that membrane filtration has a reliability in drinking water treatment. Researches should be needed on cost analysis through long-term operation and optimization of operation condition for further application.

  • PDF

Improving the Initial Effluent Water Quality of Rapid Sand Filter by Coagulants Injection (응집제주입에 의한 급속모래여과에서 초기유출수의 수질향상)

  • Kim Woo-Hang;Jeon Ji-Hoon
    • Journal of Environmental Science International
    • /
    • v.15 no.3
    • /
    • pp.237-242
    • /
    • 2006
  • The purpose of this research was to investigate the efficiency of coagulants dose after backwashing. The turbidity of initial effluent was high after backwashing in the rapid sand filtration and the high turbidity was almost removed by coagulants dose into filter-sand after backwashing. It was found that the turbidity of initial effluent was well removed by all kinds of the coagulants used in this study. When filtration was performed input water with differentiated pH's, the turbidity of effluent was low at the range of pH 5 - pH 7. But the removal was not good about over pH 9. This result was considered into the existence forms of aluminium, $Al(OH)^{2+}\;and\;{Al(OH)_2}^+$ at pH 5. Cryptosporidiums of effluent were 4/ml for ten minutes immediately after back washing and 3/ml until sixty minutes. However, the case of coagulant dose after backwashing, Cryptosporidiums of effluent were 0.5/ml for ten minutes with no detection after twenty minutes.

Evaluation of a Rapid Sand Filter with Surface Wash and Backwash Conditions (정수장 급속여과지 역세척 수위변화와 시간에 따른 세척 효율 평가)

  • Jung, Yong-Jun;Min, Kyung-Sok
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.6
    • /
    • pp.652-656
    • /
    • 2004
  • Both surface wash and backwash are considered as one of the most important methods that can improve the filtration efficiency in the existing water treatment plant. This study has mainly focused on the improvement of filtering efficiency by controlling surface wash and backwash time, and water level before backwash (when drained up to the trough, when drained up to 10 cm above filter bed, and when drained below 10 cm filter bed). Filtration efficiency was shown a little bit of differences depending on the operating conditions like surface wash injection pressure, the distance control between filter bed and the facility, and the types of surface wash. When the water level before backwash was reached up to 10 cm below filter bed after draining, however, the filtration velocity and the turbidity removal efficiency in the filter bed was improved. When the surface wash followed by backwash is longer, it showed a similar result. Because the proper adjustment of surface washing time makes filtration efficiency higher, therefore, it is necessary to set up the backwash time moderately.

Soluble Manganese Removal Using Manganese Oxide Coated Media (MOCM) (산화망간피복여재를 이용한 용존망간 제거)

  • Kim, Jinkeun;Jeong, Sechae;Ko, Suhyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.6
    • /
    • pp.813-822
    • /
    • 2006
  • Soluble manganese removal was analyzed as a function of filter media, filter depth, presence or absence of chlorination, and surface manganese oxide concentration in water treatment processes. Sand, manganese oxide coated sand (MOCS), sand+MOCS, and granular activated carbon(GAC) were used as filter media. Manganese removal, surface manganese oxide concentration, turbidity removal, and regeneration of MOCS in various filter media were investigated. Results indicated that soluble manganese removal in MOCS was rapid and efficient, and most of the removal happened at the top of the filter. When filter influent (residual chlorine 1.0mg/L) with an average manganese concentration of 0.204mg/L was fed through a filter column, the sand+MOCS and MOCS columns can remove 98.9% and 99.2% of manganese respectively on an annual basis. On the other hand, manganese removal in sand and the GAC column was minimal during the initial stage of filtration, but after 8 months of filter run they removed 99% and 35% of manganese, respectively. Sand turned into MOCS after a certain period of filtration, while GAC did not. In MOCS, the manganese adsorption rate on the filter media was inversely proportional to the filter depth, while the density of media was proportional to the filter depth.

Improvement of Rapid Sand Filtration to Two Stage Dual Media Filtration System in Water Treatment Plant (정수처리장내 급속모래 여과지의 이단복합여과시스템으로의 개량)

  • Woo, Dal-Sik;Hwang, Kyu-Won;Kim, Joon-Eon;Hwang, Byung-Gi;Jo, Kwan-Hyung
    • Journal of Environmental Health Sciences
    • /
    • v.37 no.2
    • /
    • pp.141-149
    • /
    • 2011
  • This study aimed for developing a two stage dual media filtration system. It has a sand and activated carbon layer above the under-drain system, and a sand layer above the middle-drain system for pretreatment. When retrofitting an old sand filter bed or designing a new one, this technology can substitute the existing sand filter bed without requiring a new plant site. The removal rate of total particle is 93, and 3~7 ${\mu}m$ and 5~15 ${\mu}m$ particles are all 97%. These high removal efficiencies of each pollutant due to adsorption and biological oxidation in activated carbon filter layer. The best backwashing method of two stage dual media filtration system is ascertained by air injection, air + water injection and water injection sequence. In this study, a pilot plant of two stage and dual filtration system was operated for 4 months in water treatment plant. The stability of turbidity was maintained below 1 NTU. The TOC, THMFP and HAAFP were removed about 90% by two stage and dual media filtration system, which is almost 2 times higher than existing water treatment plant.