• 제목/요약/키워드: rapid filtration

검색결과 117건 처리시간 0.026초

처리수 재이용을 위한 최종침전지 유출수의 급속여과공정 처리특성 (Treatment Characteristics of Rapid filtration Process treating Secondary Clarifier Effluent for Wastewater Reuse)

  • 한동우
    • 한국수자원학회논문집
    • /
    • 제35권2호
    • /
    • pp.213-220
    • /
    • 2002
  • 하수 처리수의 재이용을 위하여 표준활성슬러지법에 의한 생물학적 처리 후 최종침전지 유출수를 급속여과공정으로 처리하기 위한 Pilot Plant 실험연구가 수행되었다. 또한, 활성슬러지와 연계된 급속여과공정과 포기조 후단에 응집제를 주입하는 활성슬러지 이후 급속여과 처리하는 공정과의 비교 실험도 행해졌다. 최종침전지 유출수를 급속여과공정으로 처리한 경우 여과속도는 100m/day, 여과지속시간은 40시간 이하로 운전하는 것이 타당한 것으로 나타났으며, 여과지의 역세척 주기는 여과속도 100m/day일 때 40시간에 1회 정도가 되었다. 여과지 역세척 시 역세척 방법은 공세 1분, 공세+수세 30초, 수세 1분, 공세·수세 2분, 수세 3분, 안정 30초, 배수 10분의 순으로 행하는 것이 효과적이었으며, 수세속도는 10LPM으로 전체 여과수량의 2%정도였다. 표준활성슬러지 시스템에 의한 2차 처리수를 잡용수로 재이용 하기 위해서는 폭기조 후단에 응집제를 첨가하여 여과 공정을 후속공정으로 하는 시스템으로 유용하게 사용할 수 있을 것으로 판단된다.

시흥정수장 막여과시설 시범운영 (A Demonstrative Operation of A Membrane Filtration System in Siheung Water Treatment Plant)

  • 김한승;김충환;김학철;윤재경;안효원
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 2004년도 Workshop
    • /
    • pp.57-68
    • /
    • 2004
  • A demonstrative operation of a membrane system with its caparity of 3,600m$^3$/d was carried out using reservoir water as raw water for the application of membrane filtration system to drinking water treatment. The operation was undertaken at a constant flux of 0.9 m$^3$/m$^2$/d for three months. Backwashing with NaClO of 3 ppm was allowed for 30 seconds every 20 minutes of filtration. Physical cleaning was introduced after 69 times of filtration/backwashing cycle with air-scrubbing and backwashing for 1 minute, and flushing for 2 minutes. In this study, water treatment performance was investigated compared with the existing rapid sand filtration process. The membrane system was operated with no significant problems during the test period. Higher water quality was obtained in the membrane filtration than in the rapid sand filtration in terms of particulate matters such as turbidity and microbes. Although the finished water of the membrane filtration contained slightly higher concentration in dissolved matters than that of the conventional one, it met the drinking water standard. The demonstrative operation showed that membrane filtration has a reliability in drinking water treatment. Researches should be needed on cost analysis through long-term operation and optimization of operation condition for further application.

  • PDF

농촌지역의 효율적인 간이 상수처리에 관한 연구 (A Study on Efficient Simple Water Supply System in Rural Areas)

  • 이홍근;백남원;백도현
    • 한국환경보건학회지
    • /
    • 제22권3호
    • /
    • pp.103-115
    • /
    • 1996
  • The purpose of this study was to establish acceptable criteria for the design of simple water treatment plant in rural areas. To develop efficient simple water treatment methods for rural areas, water quality in the study areas was investigated and rapid and slow filtrations in pilot-scale were tested under various conditions. The main results of this study are as follows. It was found that the water qualities of the study areas exceed the drinking water standards, which implies that some treatments are required in rural areas. Treatment efficiencies of both rapid sand and dual-media (sand and anthracite) filtration without pre-treatment such as flocculation and sedimentation are very low, which were turned out to be unadequate for the rural areas. Treatment efficiencies of both vertical and horizontal slow filtration without chlorination are very high for consumed $KMnO_4, NH_3-N, NO_3-N$, turbidity, and very low for coliform and bacteria. Treatment efficiencies of both vertical and horizontal slow filtration with chlorination are very high over the most pollutants. A slow filtration with chlorination is efficient for the rural areas. An adequate depth of sand layer is over 60 cm. A horizontal filtration is more economical than a vertical filtration. A horizontal filtration can be operated for a relatively long periods of time without sand washing or replacement because clogging is removed by simple back-washing.

  • PDF

접촉여과방식 거친여과지에서 혼화조건과 여과속도가 고탁도 제거에 미치는 영향 (Effects of Mixing Condition and Filtration Velocity on Turbidity Removal in a Contact Roughing Filter)

  • 박노백;박상민;홍진아;전항배
    • 상하수도학회지
    • /
    • 제21권3호
    • /
    • pp.359-366
    • /
    • 2007
  • Slow sand filtrations have been widely used for water treatment in small communities, however their capacity is often limited by high turbidity in the raw water. For this reason, several pre-treatment facilities were required for a slow sand filter. Turbidity removal from the highly turbid raw water was investigated in roughing filters as a pre-treatment process. The roughing filters followed by rapid mixing tank were operated in the form of a contact filtration. In several jar tests, the predetermined optimum aluminium sulfate (alum) doses for turbid water of 30 and 120NTU were 30 and 50mg/L, respectively. At the optimum alum dose, physically optimum parameters including G value of $220sec^{-1}$ and rapid mixing time of 3 minutes were applied to the contact filtration system. Without addition of alum, the filtrate turbidity from the roughing filters, packed respectively with different media such as sand, porous diatomite ball and gravel, was in the range of 5~30NTU at filtration velocities of 30 and 50m/day. However, the application of a contact filtration to roughing filters showed stably lower filtrate turbidity below 1.0NTU at filtration velocity of 30 m/day. Although the filtration velocity increased to 50m/day, filtrate turbidity was still below 1.0NTU in both single and double layer roughing filters. At influent turbidity of 120NTU, the filtrate turbidity was over 5 NTU in the triple layer roughing filter, which shortened the filter run time. The flocs larger than $10{\mu}m$, formed in the rapid mixing tank, were almost captured through the roughing filter bed, while the almost flocs smaller than $10{\mu}m$ remained in filtrate.

입자분리효율을 높이기 위한 새로운 기술 (New Technologies for Enhancing Particles Separation Efficiency in Coagulation and Filtration)

  • Kunio, Ebie;Jang, Il-Hun
    • 상하수도학회지
    • /
    • 제18권2호
    • /
    • pp.254-269
    • /
    • 2004
  • Polysilicato-iron coagulant (PSI) is receiving attention in Japan as a substitute for aluminum-based coagulants. In the first part of this article, coagulation, sedimentation and filtration experiments were carried out using kaolin clay particles as the turbidizing material and four types of PSI with various molar ratios of polysilicic acid to ferric chloride (Si/Fe ratio). Results demonstrate that use of a PSI with a high Si/Fe ratio can cause a more dramatic decrease in treated water turbidity but a higher suction time ratio (STR) than when PACl is used. However, optimization by increasing the rapid agitation strength GR is found to greatly improve the STR. In addition, the series of filtration experiments verified that optimization of GR is greatly effective in controlling rapid increases in filter head loss, and also formation of a thin aging layer in the upper part of the filter bed by slow-start filtration is effective in improving filtered water turbidity over the entire filtration process. The second part of this article describes two innovative filtration techniques to increase the particle separation efficiency; (1) coagulant-coated filter medium by enhancing the electrical potential of the surface of the filter medium, and (2) coagulant dosing in influent by controlling the electrical potential of particles entering the filter layer. From the results of the various filtration experiments using a pilot plant, these two techniques were found to be very effective to reduce the effluent water turbidity from the start to the end of a filter run. Moreover, in the filtration experiments using these two methods simultaneously, higher removal efficiency of approximately 3-log (99.7%) was realized, resulting that the finished water turbidity was accordingly reduced to 0.004mg/L.

정수장 급속여과지 역세척 수위변화와 시간에 따른 세척 효율 평가 (Evaluation of a Rapid Sand Filter with Surface Wash and Backwash Conditions)

  • 정용준;민경석
    • 한국물환경학회지
    • /
    • 제20권6호
    • /
    • pp.652-656
    • /
    • 2004
  • Both surface wash and backwash are considered as one of the most important methods that can improve the filtration efficiency in the existing water treatment plant. This study has mainly focused on the improvement of filtering efficiency by controlling surface wash and backwash time, and water level before backwash (when drained up to the trough, when drained up to 10 cm above filter bed, and when drained below 10 cm filter bed). Filtration efficiency was shown a little bit of differences depending on the operating conditions like surface wash injection pressure, the distance control between filter bed and the facility, and the types of surface wash. When the water level before backwash was reached up to 10 cm below filter bed after draining, however, the filtration velocity and the turbidity removal efficiency in the filter bed was improved. When the surface wash followed by backwash is longer, it showed a similar result. Because the proper adjustment of surface washing time makes filtration efficiency higher, therefore, it is necessary to set up the backwash time moderately.

여과 성능향상을 위한 이단이층 복합여과시스템의 공정선정 연구 (A Study on the Process Selection for Two-stage and Dual Media Filtration System for Improving Filtration Performance)

  • 송시범;조민;남상호;우달식
    • 상하수도학회지
    • /
    • 제21권2호
    • /
    • pp.203-214
    • /
    • 2007
  • This study aimed at researching the process selection for two-stage and dual media filtration system, as a technology substituting the existing sand filter without expanding the site when retrofitting an old filter bed or designing a new one. In order to select the process for optimum complex filtration system, three running conditions have been tested. Test results demonstrated that Run 3 in which the 1st stage was filled with anthracite and coarse sand, and the 2nd stage was filled up with activated carbon and fine sand reduced the head loss and the load of turbidity substances. Also, Run 3 showed better performance in removing TOC, particle counts, THMFP and HAAFP, compared to other two conditions. 99 % of Cryptosporidium was removed. Bisphenol-A was rarely removed from the 1st stage of coarse sand and 2nd stage of fine sand, but 99 % of it was removed from the 2nd stage of activated carbon. In conclusion, when it is required to retrofit an old rapid filter bed or design a new one for the purpose of improving filtration performance, the following two-stage and dual media filtration system is suggested: the 1st stage of filter bed needs to be filled up with coarse sand to remove turbidity as the pretreatment for extending duration of filtering, the top part of 2nd stage needs to be filled up with granular activated caron to remove dissolved organic matters and others as the main process, and finally the bottom part of 2nd stage needs to be filled up with fine sand as the finishing process.

급속여과공정에서의 여과보조제 사용에 따른 여과특성 (Characteristics of High-Rate Filtration with Filtration Aids)

  • 안종호;윤재흥
    • 상하수도학회지
    • /
    • 제14권3호
    • /
    • pp.260-270
    • /
    • 2000
  • The objective of this study is to evaluate the effect of filter aids in the dual-media rapid filtration. Paper-filter tests were conducted to determine the proper dosages of coagulant and filter aid, and pilot plant tests using two dual-media filter columns were performed for a variety of filtration rates. Using a filter aid (non-ionic polymer), the maximum feasible filtration rate is 480m/day, while turbidity is less than 0.3 NTU and filter run-time is about 70 hours. It is possible to increase the filtration rate up to 360 m/day for keeping the turbidity less than 0.1 NTU. Turbidity increases for the filtration rate greater than 360m/day. In general, the quality of filtered water with a filter aid is stable, while the filter maintains a sufficient filter run-time for a maximum allowable head loss. Particularly, the initial breakthrough can be effectively controlled. The use of a filter aid may be one of the methods applicable if the turbidity of filtered water is required to be improved or if the filter breakthrough limits filter run-time.

  • PDF

강변여과수 처리를 위한 포기-모래여과공정에서 망간제거 기작에 관한 연구 (The study of manganese removal mechanism in aeration-sand filtration process for treating bank filtered water)

  • 최승철;김세환;양해진;임재림;왕창근;정관수
    • 상하수도학회지
    • /
    • 제24권3호
    • /
    • pp.341-349
    • /
    • 2010
  • It is well known that manganese is hard to oxidize under neutral pH condition in the atmosphere while iron can be easily oxidized to insoluble iron oxide. The purpose of this study is to identify removal mechanism of manganese in the D water treatment plant where is treating bank filtered water in aeration and rapid sand filtration. Average concentration of iron and manganese in bank filtered water were 5.9 mg/L and 3.6 mg/L in 2008, respectively. However, their concentration in rapid sand filtrate were only 0.11 mg/L and 0.03 mg/L, respectively. Most of the sand was coated with black colored manganese oxide except surface layer. According to EDX analysis of sand which was collected in different depth of sand filter, the content of i ron in the upper part sand was relatively higher than that in the lower part. while manganese content increased with a depth. The presence of iron and manganese oxidizing bacteria have been identified in sand of rapid sand filtration. It is supposed that these bacteria contributed some to remove iron and manganese in rapid sand filter. In conclusion, manganese has been simultaneously removed by physicochemical reaction and biological reaction. However, it is considered that the former reaction is dominant than the latter. That is, Mn(II) ion is rapidly adsorbed on ${\gamma}$-FeOOH which is intermediate iron oxidant and then adsorbed Mn(II) ion is oxidized to insoluble manganese oxide. In addition, manganese oxidation is accelerated by autocatalytic reaction of manganese oxide. The iron and manganese oxides deposited on the surface of the sand and then are aged with coating sand surface.

Rapid Determination of Chlorostyrenes in Fish by Freezing-Lipid Filtration, Solid-Phase Extraction and Gas Chromatography-Mass Spectrometry

  • Kim, Min-Sun;Park, Kwang-Sik;Pyo, Hee-Soo;Hong, Jong-Ki
    • Bulletin of the Korean Chemical Society
    • /
    • 제29권2호
    • /
    • pp.352-356
    • /
    • 2008
  • An analytical method has been developed for measuring chlorostyrenes in fish tissue sample. Extraction of chlorostyrenes from fish tissue was carried out by ultrasonication using acetone/n-hexane (5:2, v/v) mixture. Most of the lipids in the extract were eliminated by freezing-lipid filtration, prior to solid-phase extraction (SPE) cleanup. During freezing-lipid filtration, about 90% of the lipids extracted from the fish samples were easily removed without any significant losses of chlorostyrenes. For purification, SPE using Florisil was used for the rapid and effective cleanup. Quantification was performed using gas chromatography-mass spectrometry in the selected ion monitoring mode. Spiking experiments were carried out to determine the recovery, precision, and limits of detection (LODs) of the method. The overall recovery was above 80% in the spiked fish tissue sample at 10 and 100 ng/g levels, respectively. The detection limits for chlorostyrenes were ranged from 0.05 to 0.1 ng/g. This developed method is demonstrated to give efficient recoveries and LODs for detecting chlorostyrenes spiked into fish tissue with high lipid content.