• Title/Summary/Keyword: rapid drawdown of ground water

Search Result 3, Processing Time 0.016 seconds

Case Study of Characteristic of Ground Deformation and Strut Axial Force Change in Long Span Deep Excavation(II) (장지간 깊은 굴착에서 지반변형 및 버팀보 축력변화 특성 사례연구(II))

  • Kim, Sung-Wook;Han, Byung-Won
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.248-259
    • /
    • 2010
  • In the case of relatively good ground and construction condition in the deep excavation for the construction of subway, railway, building etc., flexible earth retaining systems are often used in an economical point of view. It is generally known that the mechanism of behavior in the flexible earth retaining system is relatively more complicated than the rigid earth retaining system. Moreover in the case of long span strut supporting system the analysis of strut axial force change becomes more difficult when the differences of ground condition and excavation work progress on both sides of excavation section are added. When deeper excavation than the specification or installation delay of supporting system is done or change of ground condition is faced due to the construction conditions during construction process, lots of axial force can be induced in some struts and that can threaten the safety of construction. This paper introduces one example of long span deep excavation where struts and rock bolts were used as a supporting system with flexible wall structure. The characteristics of ground deformation and strut axial force change, the measured data obtained during construction process, were analysed, the effects of relatively deeper excavation than the specification on one excavation side and rapid drawdown of ground water level on the other excavation side were deeply investigated from the viewpoint of mutual influences between ground deformations of both excavation sides and strut axial force changes. The effort of this article aims to improve and develop the technique of design and construction in the coming projects having similar ground condition and supporting method.

  • PDF

Full-Scale Model Test of Vertical Drain Materials using Recycled Aggregates and Crushed Stone (순환골재와 쇄석을 이용한 연직배수재의 실내모형실험)

  • Lee, Dal-Won;Lee, Jeong-Jun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.5
    • /
    • pp.103-111
    • /
    • 2012
  • In this study, the full-scale laboratory model test on utilization of recycled aggregates and crushed stone as vertical drains to use an alternative material of sand in soft ground is performed. The settlement and pore water pressure were measured to evaluate the discharge capacity and filed application, and the results were compared and analyzed through the finite element method. The measured and estimated settlement in all vertical drain materials decreases gradually with the load increase. The measured settlement 6.55~8.63 mm, and the estimated by the Hyperbolic model was 7.45~7.92 mm. So the model used for the analysis can be applied to the settlement estimation of the actual field. The variations of pore water pressure with time showed constantly regardless of the load in all vertical drainage materials. The pore water pressure was similarity to that of sand after rapid drawdown. Therefore, it was applicable to the field because discharge capacity was enough to be an alternative material to the sand which had been being used as the vertical drains.

Stability Analysis of Excavation Slope on Soft Ground (연약지반 굴착사면의 안정해석)

  • Kang, Yea Mook;Cho, Jae Hong;Kim, Yong Seong;Kim, Ji Hoon
    • Korean Journal of Agricultural Science
    • /
    • v.23 no.1
    • /
    • pp.25-38
    • /
    • 1996
  • To investigate the stability problem of irrigation-drainage channel excavation slope on soft ground, analyzed the behavior of the soft ground with excavation slope by the limit equilibrium method and the finite element method, and compared with field tests. The results of this study were summarized as follows; 1. When rapid drawdown the water level, the crack was occurred by the effect of the excess pore water pressure, and the pore water pressure was decreased slowly. 2. As the width of excavation was larger, the crack width was larger. And, excavated depth was deeper, the progressive failure was appeared. 3. When the soft ground excavation was small-scale, the minimum safety factor was more effected by cohesion(1.0, 1.5, 2.0, 2.5, 3.0) than excavated slope inclination(1:l, 1:1.5, 1:2). 4. As excavation was progressed, the settlement occurred on the top-slope due to plastic domain, and heaving was occurred at the bottom of excavation. 5. The maximum shear stress was appeared greatly as the base part of slope went down. Because of the increase of the maximum shear stress, tension area occurred and local failure possibility was increased. 6. As the excavation depth was increased, the maximum shear strain was appeared greatly at the base of slope and distribution pattern was concentrated beneath the middle of slope.

  • PDF