• Title/Summary/Keyword: rapid freezing and thawing test

Search Result 33, Processing Time 0.018 seconds

Material Properties of Concrete Produced with Limestone Blended Cement (석회석 혼합 시멘트로 제조된 콘크리트의 기초 물성)

  • Bang, Jin-Wook;Kwon, Seung-Jun;Shin, Kyung-Joon;Chung, Woo-Jung;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.2
    • /
    • pp.125-132
    • /
    • 2015
  • This paper presents an experimental investigation in order to evaluate fresh and hardened properties of LP (Limestone Powder) blended cement concrete. The cement contents of the mixtures are replaced by LP in the range of 10%, 15%, 25%, and 35%, while a control mixture is prepared with only OPC (Ordinary Portland Cement). The fresh concrete properties like slump and air content are similar to those of control mixture up to 35% of replacement ratio of LP, however a delay in setting time is evaluated. The hardened properties including compressive strength, flexural strength, and rapid freezing and thawing resistance shows similar results of control mixture up to 15% of replacement. Relatively lower strength development is evaluated over 25% replacement of LP. For accelerated carbonation test, resistance to carbonation rapidly decreases with increasing LP replacement ratio due to the limited amount of $Ca(OH)_2$. From the study, LP replacement under 15% can be adopted considering reduction of strength and resistance to carbonation.

Durability Characteristics of Ternary Cement Matrix Using Ferronickel Slag According to the Alkali-Activators (알칼리 활성화제 종류별 페로니켈슬래그를 사용한 3성분계 시멘트 경화체의 내구특성)

  • Cho, Won-Jung;Park, Eon-Sang;Jung, Ho-Seop;Ann, Ki-Yong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.2
    • /
    • pp.190-197
    • /
    • 2020
  • This paper evaluates the mechanical properties and durability of cement matrix blended with mineral admixtures and ferronickel slag(FNS) powder which is an industrial b y-product during ferronickel smelting process. The hydration heat, pore structure, compressive strength, length change, rapid chloride penetration test(RCPT), and freezing and thawing resistance of ternary blended cement matrix were investigated and compared with ordinary portland cement matrix. The result showed that the compressive strength of ternary blended cement matrix using ferronickel slag powder and mineral mixture was low in strength compared to the reference concrete, but recovered to a certain extent by using alkali activator. Length change of cement mortar using FNS powder have shown less shrinkage occurs than the reference specimen. In addition, irrespective of using the alkali-activators, all ternary mix are indicative of the 'very low' range for chloride ion penetrability according to the ASTM C 1202, and the freeze-thaw resistance also showed excellent results.

Efficacy of Frozen-Thawed ET in Patients with Old Age or Non-Pregnant in Fresh ET Cycles (고령 환자와 신선주기 배아이식에서 임신에 실패한 환자에서 동결-융해 배아이식의 효용성)

  • Choi, Su Jin;Lee, Sun Hee;Song, In Ok;Koong, Mi Kyoung;Kang, Inn Soo;Jun, Jin Hyun
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.33 no.4
    • /
    • pp.237-243
    • /
    • 2006
  • Objective: The aim of this study was to evaluate the efficacy of frozen-thawed ET in poor prognosis patients such as the old age (38~44 years; OA group) and the patients who did not achieve clinical pregnancy with the first fresh ET cycle (non-pregnant patients; NP group). Methods: Laboratory and clinical data were collected from fresh and frozen-thawed ET cycles of OA and NP group. Controlled ovarian hyperstimulation (COH) and conventional insemination or ICSI, in vitro culture and ET were performed by routine procedures. Supernumerary embryos were frozen by the slow freezing method, and frozen embryos were thawed by the rapid thawing method. Embryo development, pregnancy and implantation rates were statistically analyzed by Student t-test and chi square test Results: Mean ages were similar between fresh ET ($40.0{\pm}1.8$ years, n=206) and frozen-thawed ET ($39.9{\pm}1.9$ years, n=69) cycles in OA group. However, the clinical pregnancy and implantation rate of subsequent frozen-thawed ET significantly higher than those of fresh ET cycles (29.0% and 11.2% vs. 16.5% and 7.0%, p<0.05). In NP group, there was no difference in the mean age between fresh ET ($31.2{\pm}2.3$ years, n=40) and frozen-thawed ET ($31.9{\pm}3.1$ years, n=119) in subsequent cycles. The clinical pregnancy and implantation rates were similar between the subsequent fresh ET (42.5% and 22.6%) and the frozen-thawed ET (40.3% and 18.8%). Conclusion: In old age patients, higher pregnancy rate of frozen-thawed ET compared to fresh ET cycles in this study. It may be related that better uterine environments for implantation in frozen-thawed ET cycles than that of non-physiological hormonal condition in uterus of fresh COH cycles.