• Title/Summary/Keyword: range query

Search Result 201, Processing Time 0.02 seconds

SPEC: Space Efficient Cubes for Data Warehouses (SPEC : 데이타 웨어하우스를 위한 저장 공간 효율적인 큐브)

  • Chun Seok-Ju;Lee Seok-Lyong;Kang Heum-Geun;Chung Chin-Wan
    • Journal of KIISE:Databases
    • /
    • v.32 no.1
    • /
    • pp.1-11
    • /
    • 2005
  • An aggregation query computes aggregate information over a data cube in the query range specified by a user Existing methods based on the prefix-sum approach use an additional cube called the prefix-sum cube(PC), to store the cumulative sums of data, causing a high space overhead. This space overhead not only leads to extra costs for storage devices, but also causes additional propagations of updates and longer access time on physical devices. In this paper, we propose a new prefix-sum cube called 'SPEC' which drastically reduces the space of the PC in a large data warehouse. The SPEC decreases the update propagation caused by the dependency between values in cells of the PC. We develop an effective algorithm which finds dense sub-cubes from a large data cube. We perform an extensive experiment with respect to various dimensions of the data cube and query sizes, and examine the effectiveness and performance ot our proposed method. Experimental results show that the SPEC significantly reduces the space of the PC while maintaining a reasonable query performance.

Efficient Multi-Step k-NN Search Methods Using Multidimensional Indexes in Large Databases (대용량 데이터베이스에서 다차원 인덱스를 사용한 효율적인 다단계 k-NN 검색)

  • Lee, Sanghun;Kim, Bum-Soo;Choi, Mi-Jung;Moon, Yang-Sae
    • Journal of KIISE
    • /
    • v.42 no.2
    • /
    • pp.242-254
    • /
    • 2015
  • In this paper, we address the problem of improving the performance of multi-step k-NN search using multi-dimensional indexes. Due to information loss by lower-dimensional transformations, existing multi-step k-NN search solutions produce a large tolerance (i.e., a large search range), and thus, incur a large number of candidates, which are retrieved by a range query. Those many candidates lead to overwhelming I/O and CPU overheads in the postprocessing step. To overcome this problem, we propose two efficient solutions that improve the search performance by reducing the tolerance of a range query, and accordingly, reducing the number of candidates. First, we propose a tolerance reduction-based (approximate) solution that forcibly decreases the tolerance, which is determined by a k-NN query on the index, by the average ratio of high- and low-dimensional distances. Second, we propose a coefficient control-based (exact) solution that uses c k instead of k in a k-NN query to obtain a tigher tolerance and performs a range query using this tigher tolerance. Experimental results show that the proposed solutions significantly reduce the number of candidates, and accordingly, improve the search performance in comparison with the existing multi-step k-NN solution.

Knowledge-Based Approach for an Object-Oriented Spatial Database System (지식기반 객체지향 공간 데이터베이스 시스템)

  • Kim, Yang-Hee
    • Journal of Intelligence and Information Systems
    • /
    • v.9 no.3
    • /
    • pp.99-115
    • /
    • 2003
  • In this paper, we present a knowledge-based object-oriented spatial database system called KOBOS. A knowledge-based approach is introduced to the object-oriented spatial database system for data modeling and approximate query answering. For handling the structure of spatial objects and the approximate spatial operators, we propose three levels of object-oriented data model: (1) a spatial shape model; (2) a spatial object model; (3) an internal description model. We use spatial type abstraction hierarchies(STAHs) to provide the range of the approximate spatial operators. We then propose SOQL, a spatial object-oriented query language. SOQL provides an integrated mechanism for the graphical display of spatial objects and the retrieval of spatial and aspatial objects. To support an efficient hybrid query evaluation, we use the top-down spatial query processing method.

  • PDF

Spatial Statistic Data Release Based on Differential Privacy

  • Cai, Sujin;Lyu, Xin;Ban, Duohan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.10
    • /
    • pp.5244-5259
    • /
    • 2019
  • With the continuous development of LBS (Location Based Service) applications, privacy protection has become an urgent problem to be solved. Differential privacy technology is based on strict mathematical theory that provides strong privacy guarantees where it supposes that the attacker has the worst-case background knowledge and that knowledge has been applied to different research directions such as data query, release, and mining. The difficulty of this research is how to ensure data availability while protecting privacy. Spatial multidimensional data are usually released by partitioning the domain into disjointed subsets, then generating a hierarchical index. The traditional data-dependent partition methods need to allocate a part of the privacy budgets for the partitioning process and split the budget among all the steps, which is inefficient. To address such issues, a novel two-step partition algorithm is proposed. First, we partition the original dataset into fixed grids, inject noise and synthesize a dataset according to the noisy count. Second, we perform IH-Tree (Improved H-Tree) partition on the synthetic dataset and use the resulting partition keys to split the original dataset. The algorithm can save the privacy budget allocated to the partitioning process and obtain a more accurate release. The algorithm has been tested on three real-world datasets and compares the accuracy with the state-of-the-art algorithms. The experimental results show that the relative errors of the range query are considerably reduced, especially on the large scale dataset.

Adaptive Path Index for Efficient U Query Processing (효율적인 XML 질의 처리를 위한 적응형 경로 인덱스)

  • 민준기;심규석;정진완
    • Journal of KIISE:Databases
    • /
    • v.31 no.1
    • /
    • pp.61-71
    • /
    • 2004
  • XML can describe a wide range of data, from regular to irregular and from flat to deeply nested. Thus, XML is rapidly emerging as the do facto standard for the Web document format since XML supports an efficient data exchange and integration. Also, to retrieve the data represented by XML, several XML query languages are proposed. XML query languages such as XPath and XQuery use path expressions to traverse irregularly structured data which comprise B% elements. To evaluate path expressions, various path indexes are proposed. However, traditional path indexes are constructed by utilizing only the XML data structure. Therefore, in this paper, we propose an adaptive path index which utilizes the XML data structure as well as query workloads. To improve the query performance, the adaptive path index proposed by this paper manages the frequently used paths and the structural summary of the XML data using a hash tree and a graph structure. Experimental results show that the adaptive path index improves the query performance typically 2 to 69 times compared with the existing indexes.

Efficient Authentication of Aggregation Queries for Outsourced Databases (아웃소싱 데이터베이스에서 집계 질의를 위한 효율적인 인증 기법)

  • Shin, Jongmin;Shim, Kyuseok
    • Journal of KIISE
    • /
    • v.44 no.7
    • /
    • pp.703-709
    • /
    • 2017
  • Outsourcing databases is to offload storage and computationally intensive tasks to the third party server. Therefore, data owners can manage big data, and handle queries from clients, without building a costly infrastructure. However, because of the insecurity of network systems, the third-party server may be untrusted, thus the query results from the server may be tampered with. This problem has motivated significant research efforts on authenticating various queries such as range query, kNN query, function query, etc. Although aggregation queries play a key role in analyzing big data, authenticating aggregation queries has not been extensively studied, and the previous works are not efficient for data with high dimension or a large number of distinct values. In this paper, we propose the AMR-tree that is a data structure, applied to authenticate aggregation queries. We also propose an efficient proof construction method and a verification method with the AMR-tree. Furthermore, we validate the performance of the proposed algorithm by conducting various experiments through changing parameters such as the number of distinct values, the number of records, and the dimension of data.

Revealing Hidden Relations between Query-Words for an Efficient Inducing User's Intention of an Information Search (효율적 검색의도 파악을 위한 쿼리 단어 가시화에 관한 연구)

  • Kwon, Soon-Jin;Hong, Chul-Eui;Kim, Won-Il
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.49 no.2
    • /
    • pp.44-52
    • /
    • 2012
  • This paper proposes to increase an efficiency of somebody searching information by a visualization of an unseen query words with well-selected user's intent structures. If a search engine identifies user's intent to pursue information, it would be an effective search engine. To do so, it is needed that relationships between query-words are to be visible after recovering words lost during formulated, and that an intention structure/elements is to be established. This paper will review previous studies, after then, define a simple structure of the search intent, and show a process to expand and to generate the query words appropriate to the intent structure with a method for the visualization of the query words. In this process, some examples and tests are necessary that one of the multiple intent structured layers is to assign to a range of query-words. Increasing/Decreasing an efficiency are analyzed to find. Future research is needed how to automate a process to extend structural nodules of user's intent.

A Method of Reducing the Processing Cost of Similarity Queries in Databases (데이터베이스에서 유사도 질의 처리 비용 감소 방법)

  • Kim, Sunkyung;Park, Ji Su;Shon, Jin Gon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.4
    • /
    • pp.157-162
    • /
    • 2022
  • Today, most data is stored in a database (DB). In the DB environment, the users requests the DB to find the data they wants. Similarity Query has predicate that explained by a similarity. However, in the process of processing the similarity query, it is difficult to use an index that can reduce the range of processed records, so the cost of calculating the similarity for all records in the table is high each time. To solve this problem, this paper defines a lightweight similarity function. The lightweight similarity function has lower data filtering accuracy than the similarity function, but consumes less cost than the similarity function. We present a method for reducing similarity query processing cost by using the lightweight similarity function features. Then, Chebyshev distance is presented as a lightweight similarity function to the Euclidean distance function, and the processing cost of a query using the existing similarity function and a query using the lightweight similarity function is compared. And through experiments, it is confirmed that the similarity query processing cost is reduced when Chebyshev distance is applied as a lightweight similarity function for Euclidean similarity.

Parallel Range Query processing on R-tree with Graphics Processing Units (GPU를 이용한 R-tree에서의 범위 질의의 병렬 처리)

  • Yu, Bo-Seon;Kim, Hyun-Duk;Choi, Won-Ik;Kwon, Dong-Seop
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.5
    • /
    • pp.669-680
    • /
    • 2011
  • R-trees are widely used in various areas such as geographical information systems, CAD systems and spatial databases in order to efficiently index multi-dimensional data. As data sets used in these areas grow in size and complexity, however, range query operations on R-tree are needed to be further faster to meet the area-specific constraints. To address this problem, there have been various research efforts to develop strategies for acceleration query processing on R-tree by using the buffer mechanism or parallelizing the query processing on R-tree through multiple disks and processors. As a part of the strategies, approaches which parallelize query processing on R-tree through Graphics Processor Units(GPUs) have been explored. The use of GPUs may guarantee improved performances resulting from faster calculations and reduced disk accesses but may cause additional overhead costs caused by high memory access latencies and low data exchange rate between GPUs and the CPU. In this paper, to address the overhead problems and to adapt GPUs efficiently, we propose a novel approach which uses a GPU as a buffer to parallelize query processing on R-tree. The use of buffer algorithm can give improved performance by reducing the number of disk access and maximizing coalesced memory access resulting in minimizing GPU memory access latencies. Through the extensive performance studies, we observed that the proposed approach achieved up to 5 times higher query performance than the original CPU-based R-trees.

Efficient Execution of Range Mosaic Query and Range Mosaic Top-k Query (범위 모자이크 질의와 범위 모자이크 상위-k 질의의 효율적인 수행)

  • Hong, Seok-Jin;Lee, Suk-Ho
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11b
    • /
    • pp.61-63
    • /
    • 2005
  • 범위 통계 질의는 범위 집계 질의와 같이 질의 영역 내에 포함된 데이타의 통계 정보를 반환하는 질의를 의미한다. 이 논문에서는 새로운 범위 통계 질의로 범위 모자이크 질의와 범위 모자이크 상위-k 질의를 소개한다. 범위 모자이크 질의는 질의 영역을 다차원 격자 형태로 분할 한 후, 분할된 각 셀에 대해 집계값을 구하는 질의이며, 범위 모자이크 상위-k 질의는 범위 모자이크 질의 결과 중 집계값을 기준으로 상위 k개의 셀을 구하는 질의이다. 이 논문에서는 집계 R-트리를 사용하여 두 종류의 질의를 효율적으로 수행하는 알고리즘을 제안한다. 또한, 실험 결과를 통해 제안된 알고리즘이 생성된 데이타와 실제 데이타 모두에 대해 졸은 성능을 나타내는 것을 보인다.

  • PDF