• Title/Summary/Keyword: range finder system

Search Result 84, Processing Time 0.018 seconds

Design for System Architecture of Multiple AVPs with Fail-safe based on Dynamic Network (Fail-safe를 적용한 다수 AVP 차량 및 아키텍처 설계)

  • Woo, Hoon-Je;Kim, Jae-Hwan;Sung, Kyung-Bok;Kim, Jung-Ha
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.6
    • /
    • pp.584-593
    • /
    • 2012
  • This paper introduces an AVP (Automated Valet Parking) system which applies an autonomous driving concept into the current PAS (Parking Assistant System). The present commercial PAS technology is limited into vehicle. It means vehicle only senses and controls by and for itself to assist the parking. Therefore, the present PAS is restricted to simple parking events. But AVP includes wider parking events and planning because it uses infra-sensor network as well as vehicle sensor. For the realization of AVP, the commercial steering system of a compact vehicle was modified into steer-by-wire structure and various sensors like LRF (Long Range Finder) and camera were installed in a parking area. And local & global server decides where and when the vehicle can go and park in the testing area after recognized the status of environment and vehicle from those sensors. GPS solution was used to validate the AVP performance. More various parking situations, vehicles and obstacles will be considered in the next research stages based on these results. And we expect this AVP solution with more intelligent vehicles can be applied in a big parking lot like a market, an amusement park, etc.

A Study on Improvement of Submarine Attack Periscope Operation Performance using Installing Protector on Sail (잠수함 공격잠망경 함교 보호구조물 설치를 통한 장비 운용성능 향상에 관한 연구)

  • Choi, Woo-Seok;Chang, Ho-Seong;Lee, Young-Suk;Kim, Sang-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.5
    • /
    • pp.199-206
    • /
    • 2021
  • This paper describes the feasibility and reliability verification of installing a protective structure to protect attack periscopes. The attack periscope is the critical equipment of a submarine to enable the user to monitor surface and air activity, collect navigational data, and detect and identify targets. The attack periscope provides target information acquired through TV, IR camera, and laser range finder to the combat system. In the product improvement program, the upper part of the masts was exposed to the outside of the sail because the existing attack periscope was replaced with a new one. On the other hand, the head sensor can be damaged by floating objects, such as fishing nets, during sea navigation. Therefore, the installation of a protective structure for an attack periscope improved the equipment operation performance. The feasibility and reliability of the installation of the protective structure were verified by examining the influence of URN.

Development of a low-power remote monitoring module for set-net fish school based on WCDMA (WCDMA 기반의 저전력 정치망 어군 정보전송 모듈 개발)

  • Donggil LEE;Myungsung KOO;Gyeom HEO;Jiwon CHEONG;Hyohyuc IM;Jaehyun BAE
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.59 no.3
    • /
    • pp.206-214
    • /
    • 2023
  • Fish school monitoring technology is utilized for various purposes, such as boat fishing and resource surveys. With advancements in information and communication technology, this technology has expanded its application to remote areas. Its significance has grown in fishing sites, particularly for improving the efficiency and cost-effectiveness of set-net fishing. Set-net fishing gears are not limited to coastal areas, but are also installed in inland and remote sea regions. Consequently, fishermen require technology that allows them to quickly transmit information about approaching fish schools and enables them to perform long-term monitoring. The development of remote monitoring technology for set-net fish schools must consider crucial design factors such as communication range, transmission speed, power consumption of information modules, and operational expenses. In this study, we developed a low-power remote monitoring module for set-net fish school based on WCDMA. The module was specifically designed to minimize power consumption, allowing for communication over long distances and extended operation times in set-net fishing applications. Furthermore, we developed a web server software application that enables remote access to fish schools and provides real-time weather information. The performance of the developed module was evaluated through set-net fishing site application and experiments with moving ships on the sea. The experimental results demonstrated that the remote monitoring system, consisting of the developed low-power remote monitoring module for set-net fish school based on WCDMA and a fish finder, had an average power consumption of 4.6 W, a maximum communication range of 22.84 km, and a data transmission and reception rate of 98.79%. The maximum fish school information transmission and reception rate was 97.26%

Developement of Scope for Military Rangefinder Using Schmidt Prism and Biprism Theory of Optometric Instrument (안광학기기에 사용되는 바이프리즘원리와 슈미트 프리즘을 이용한 군사 거리측정기용 스코프 개발)

  • Cha, Jung-Won;Lee, Dong-Hee
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.20 no.2
    • /
    • pp.167-175
    • /
    • 2015
  • Purpose: The new-type rangefinder, which is using the biprism principle, is introduced to develop the range finder which can be easily carried by soldiers, and in order to realize those technologies specifically, we try to develop a scope for military rangefinder by doing optical design which can secure enough space to move the biprism. Methods: After setting up the verious initial condition to realize two kinds of goals, that are the securement of enough space to move the biprism and the easy-exchangeability of two kinds of biprisms, and then the optical system was optimized by using optical design program CodeV in order to minimize the finite ray aberrations. Results: We designed the biprism housing to makes it possible to swap the two kinds of biprisms. It was appeared that the Schmidt prism is suitable as erecting prism which can make sure the space to move the biprism. 16.5 mm was good for the face length of Schmidt prism. The optical system with a Schmidt prism and a biprism was designed, and the finite ray aberrations was minimized. Conclusions: We developed a 5X scope for an optical rangefinder using a biprism and a Schmidt prism with 16.5 mm face length. This scope is valid for the optical system which has the effective field angle of ${\pm}3.6^{\circ}$, and the finite ray aberrations are well controlled within the ${\pm}8.95^{\prime}$.