• Title/Summary/Keyword: random processes

Search Result 373, Processing Time 0.025 seconds

Validation of the Proximity of Clothing to Self Scale for Older Persons (의복의 자아 근접성 척도 검증 - 노년층을 대상으로 -)

  • Lee, Young-A;Sontag, M. Suzanne
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.31 no.6 s.165
    • /
    • pp.848-858
    • /
    • 2007
  • Sontag and Lee (2004) recently developed an objectively measurable instrument, the Proximity of Clothing to Self(PCS) Scale, which measured the psychological closeness of clothing to self. They validated a 4-factor, 24-item PCS Scale for use with adolescents and identified the need for confirmation of the factor structure with other age groups. This paper extends the work of Sontag and Lee by employing the PCS Scale with older persons, age 65 and over, and reports the validation of a 3-factor, 19-item PCS Scale for older persons. A mail survey was sent to a national random sample of 1,700 older Persons by means of a list purchased from a U.S. survey sampling company in late November 2004. Total usuable number of respondents was 250 with an adjusted response rate of 15.6 percent. Three analytical rounds of confirmatory factor analysis(CFA) to test the construct validity of the PCS Scale were conducted by using AMOS 5.0(Analysis of Moment Structures), one of several structural equation modeling(SEM) programs. Completion of three rounds of the CFA resulted in a 3-factor, 19-item PCS Scale with demonstrated construct validity and reliability for older persons. The three PCS dimensions are clothing in relation to 1) self as structure-process(PCS Dimension 1-2-3 combined), 2) self-esteem-evaluative and affective processes(PCS Dimension 4-5 combined), and 3) body image and body cathexis(PCS Dimension 6). The initially hypothesized 6-factor scale(Sontag & Lee, 2004) was not confirmed for adolescents in their study nor with older persons in this study. In addition, the 4-factor solution for the adolescent group did not hold for older persons. It appears that the self-system of older persons is more integrated than may be true for younger individuals. Recommendations for future testing of construct validity of the PCS Scale are made.

Automated Analyses of Ground-Penetrating Radar Images to Determine Spatial Distribution of Buried Cultural Heritage (매장 문화재 공간 분포 결정을 위한 지하투과레이더 영상 분석 자동화 기법 탐색)

  • Kwon, Moonhee;Kim, Seung-Sep
    • Economic and Environmental Geology
    • /
    • v.55 no.5
    • /
    • pp.551-561
    • /
    • 2022
  • Geophysical exploration methods are very useful for generating high-resolution images of underground structures, and such methods can be applied to investigation of buried cultural properties and for determining their exact locations. In this study, image feature extraction and image segmentation methods were applied to automatically distinguish the structures of buried relics from the high-resolution ground-penetrating radar (GPR) images obtained at the center of Silla Kingdom, Gyeongju, South Korea. The major purpose for image feature extraction analyses is identifying the circular features from building remains and the linear features from ancient roads and fences. Feature extraction is implemented by applying the Canny edge detection and Hough transform algorithms. We applied the Hough transforms to the edge image resulted from the Canny algorithm in order to determine the locations the target features. However, the Hough transform requires different parameter settings for each survey sector. As for image segmentation, we applied the connected element labeling algorithm and object-based image analysis using Orfeo Toolbox (OTB) in QGIS. The connected components labeled image shows the signals associated with the target buried relics are effectively connected and labeled. However, we often find multiple labels are assigned to a single structure on the given GPR data. Object-based image analysis was conducted by using a Large-Scale Mean-Shift (LSMS) image segmentation. In this analysis, a vector layer containing pixel values for each segmented polygon was estimated first and then used to build a train-validation dataset by assigning the polygons to one class associated with the buried relics and another class for the background field. With the Random Forest Classifier, we find that the polygons on the LSMS image segmentation layer can be successfully classified into the polygons of the buried relics and those of the background. Thus, we propose that these automatic classification methods applied to the GPR images of buried cultural heritage in this study can be useful to obtain consistent analyses results for planning excavation processes.

Retrieval of Hourly Aerosol Optical Depth Using Top-of-Atmosphere Reflectance from GOCI-II and Machine Learning over South Korea (GOCI-II 대기상한 반사도와 기계학습을 이용한 남한 지역 시간별 에어로졸 광학 두께 산출)

  • Seyoung Yang;Hyunyoung Choi;Jungho Im
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_3
    • /
    • pp.933-948
    • /
    • 2023
  • Atmospheric aerosols not only have adverse effects on human health but also exert direct and indirect impacts on the climate system. Consequently, it is imperative to comprehend the characteristics and spatiotemporal distribution of aerosols. Numerous research endeavors have been undertaken to monitor aerosols, predominantly through the retrieval of aerosol optical depth (AOD) via satellite-based observations. Nonetheless, this approach primarily relies on a look-up table-based inversion algorithm, characterized by computationally intensive operations and associated uncertainties. In this study, a novel high-resolution AOD direct retrieval algorithm, leveraging machine learning, was developed using top-of-atmosphere reflectance data derived from the Geostationary Ocean Color Imager-II (GOCI-II), in conjunction with their differences from the past 30-day minimum reflectance, and meteorological variables from numerical models. The Light Gradient Boosting Machine (LGBM) technique was harnessed, and the resultant estimates underwent rigorous validation encompassing random, temporal, and spatial N-fold cross-validation (CV) using ground-based observation data from Aerosol Robotic Network (AERONET) AOD. The three CV results consistently demonstrated robust performance, yielding R2=0.70-0.80, RMSE=0.08-0.09, and within the expected error (EE) of 75.2-85.1%. The Shapley Additive exPlanations(SHAP) analysis confirmed the substantial influence of reflectance-related variables on AOD estimation. A comprehensive examination of the spatiotemporal distribution of AOD in Seoul and Ulsan revealed that the developed LGBM model yielded results that are in close concordance with AERONET AOD over time, thereby confirming its suitability for AOD retrieval at high spatiotemporal resolution (i.e., hourly, 250 m). Furthermore, upon comparing data coverage, it was ascertained that the LGBM model enhanced data retrieval frequency by approximately 8.8% in comparison to the GOCI-II L2 AOD products, ameliorating issues associated with excessive masking over very illuminated surfaces that are often encountered in physics-based AOD retrieval processes.