• Title/Summary/Keyword: random points

Search Result 411, Processing Time 0.026 seconds

Comparison of White-naped Crane Habitat Use Pattern with Land-coverage Map in the Han-River Estuary and DMZ (한강하구에 도래하는 재두루미(Grus vipio) 서식지이용과 토지피복도 상관관계 연구)

  • Kim, Sung-Ok;Lee, Sang-Don
    • Journal of Environmental Impact Assessment
    • /
    • v.17 no.4
    • /
    • pp.255-262
    • /
    • 2008
  • For the Han-river estuary and DMZ where white-naped crane (Grus vipio; endangered migratory bird) stopover or spend winter, the habitat composition and the habitat use pattern of white-naped crane were analyzed with the position data obtained by the satellite tracking method. By the use of geographic information system (GIS), the percent composition of seven habitat categories of white naped-crane data points (n=228) was analyzed. The chi-square test showed that the white-naped crane habitat use pattern was significantly different (p<0.05) from that of random points (n=228). It means that white-naped crane select and use particular habitat area in the Han-river estuary and DMZ.

Global Feature Extraction and Recognition from Matrices of Gabor Feature Faces

  • Odoyo, Wilfred O.;Cho, Beom-Joon
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.2
    • /
    • pp.207-211
    • /
    • 2011
  • This paper presents a method for facial feature representation and recognition from the Covariance Matrices of the Gabor-filtered images. Gabor filters are a very powerful tool for processing images that respond to different local orientations and wave numbers around points of interest, especially on the local features on the face. This is a very unique attribute needed to extract special features around the facial components like eyebrows, eyes, mouth and nose. The Covariance matrices computed on Gabor filtered faces are adopted as the feature representation for face recognition. Geodesic distance measure is used as a matching measure and is preferred for its global consistency over other methods. Geodesic measure takes into consideration the position of the data points in addition to the geometric structure of given face images. The proposed method is invariant and robust under rotation, pose, or boundary distortion. Tests run on random images and also on publicly available JAFFE and FRAV3D face recognition databases provide impressively high percentage of recognition.

Kernel Regression Estimation for Permutation Fixed Design Additive Models

  • Baek, Jangsun;Wehrly, Thomas E.
    • Journal of the Korean Statistical Society
    • /
    • v.25 no.4
    • /
    • pp.499-514
    • /
    • 1996
  • Consider an additive regression model of Y on X = (X$_1$,X$_2$,. . .,$X_p$), Y = $sum_{j=1}^pf_j(X_j) + $\varepsilon$$, where $f_j$s are smooth functions to be estimated and $\varepsilon$ is a random error. If $X_j$s are fixed design points, we call it the fixed design additive model. Since the response variable Y is observed at fixed p-dimensional design points, the behavior of the nonparametric regression estimator depends on the design. We propose a fixed design called permutation fixed design, and fit the regression function by the kernel method. The estimator in the permutation fixed design achieves the univariate optimal rate of convergence in mean squared error for any p $\geq$ 2.

  • PDF

Molecular Dynamics Study on Atomistic Details of the Melting of Solid Argon

  • Han, Joo-Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.8
    • /
    • pp.412-418
    • /
    • 2007
  • The atomic scale details of the melting of solid argon were monitored with the aid of molecular dynamics simulations. The potential energy distribution is substantially disturbed by an increase in the interatomic distance and the random of set distance from the lattice points, with increasing temperature. The potential energy barriers between the lattice points decrease in magnitude with the temperature. Eventually, at the melting point, these barriers can be overcome by atoms that are excited with the entropy gain acquired when the atoms obtain rotational freedom in their atomic motion, and the rotational freedom leads to the collapse of the crystal structure. Furthermore, it was found that the surface of crystals plays an important role in the melting process: the surface eliminates the barrier for the nucleation of the liquid phase and facilitates the melting process. Moreover, the atomic structure of the surface varies with increasing temperature, first via surface roughening and then, before the bulk melts, via surface melting.

Reliability Estimation Using Kriging Metamodel (크리깅 메타모델을 이용한 신뢰도 계산)

  • Cho Tae-Min;Ju Byeong-Hyeon;Jung Do-Hyun;Lee Byung-Chai
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.8 s.251
    • /
    • pp.941-948
    • /
    • 2006
  • In this study, the new method for reliability estimation is proposed using kriging metamodel. Kriging metamodel can be determined by appropriate sampling range and sampling numbers because there are no random errors in the Design and Analysis of Computer Experiments(DACE) model. The first kriging metamodel is made based on widely ranged sampling points. The Advanced First Order Reliability Method(AFORM) is applied to the first kriging metamodel to estimate the reliability approximately. Then, the second kriging metamodel is constructed using additional sampling points with updated sampling range. The Monte-Carlo Simulation(MCS) is applied to the second kriging metamodel to evaluate the reliability. The proposed method is applied to numerical examples and the results are almost equal to the reference reliability.

Spacecraft Attitude Estimation by Unscented Filtering (고른 필터를 이용한 인공위성의 자세 추정)

  • Leeghim, Hen-Zeh;Choi, Yoon-Hyuk;Bang, Hyo-Choong;Park, Jong-Oh
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.9
    • /
    • pp.865-872
    • /
    • 2008
  • Spacecraft attitude estimation using the nonlinear unscented filter is addressed to fully utilize capabilities of the unscented transformation. To release significant computational load, an efficient technique is proposed by reasonably removing correlation between random variables. This modification introduces considerable reduction of sigma points and computational burden in matrix square-root calculation for most nonlinear systems. Unscented filter technique makes use of a set of sample points to predict mean and covariance. The general QUEST(QUaternion ESTimator) algorithm preserves explicitly the quaternion normalization, whereas extended Kalman filter(EKF) implicitly obeys the constraint. For spacecraft attitude estimation based on quaternion, an approach to computing quaternion means from sampled quaternions with guarantee of the quaternion norm constraint is introduced applying a constrained optimization technique. Finally, the performance of the new approach is demonstrated using a star tracker and rate-gyro measurements.

New Definition of the Fibrogram and Its Application to Cotton Blending

  • Jeon, Boong-Soo
    • Fibers and Polymers
    • /
    • v.6 no.4
    • /
    • pp.332-335
    • /
    • 2005
  • The fibrogram theory is newly derived from the superposition principle of the conventional staple diagram, in which the left-hand ends of the fibers have to share a common starting point in order for the fiber length distribution to be measured, and the right-hand ends of the fibers form points. It is shown that the fibrogram is the staple diagram of the fiber sample having different random starting points, as well as the double cumulative distribution function of the frequency length function in the length biased sample. Also, the various means, viz. the numerical mean length, numerical mean length in median, length biased mean length, and length biased mean length in median, and the various upper half means, viz. the numerical upper half mean length, numerical upper half mean length in median, length biased upper half mean length, and length biased upper half mean length in median, are discussed in relation to the cotton blending process.

Asymptotic Relative Efficiency of Chi-squared Type Tests Based on the Empirical Process

  • Lee, Sang-Yeol
    • Journal of the Korean Statistical Society
    • /
    • v.25 no.3
    • /
    • pp.337-346
    • /
    • 1996
  • The chi-squared type statistic generated from the empirical process can be used for testing the goodness of fit hypothesis on iid random sample. Lee (1995) showed that under some conditions, the chi-squared type statistic is asymptotically maximin in the sense of Strasser (1985). Since the chi-squared type statistic depends on the choice of *points in the unit interval, it is worth investigating the points yielding more efficient tests. Motivated by this viewpoint, we are led to study the asymptotic relative efficiency of chi-squared type tests in the same setting of Lee (1995). Some examples are given for illustration.

  • PDF

Moment-Based Density Approximation Algorithm for Symmetric Distributions

  • Ha, Hyung-Tae
    • Communications for Statistical Applications and Methods
    • /
    • v.14 no.3
    • /
    • pp.583-592
    • /
    • 2007
  • Given the moments of a symmetric random variable, its density and distribution functions can be accurately approximated by making use of the algorithm proposed in this paper. This algorithm is specially designed for approximating symmetric distributions and comprises of four phases. This approach is essentially based on the transformation of variable technique and moment-based density approximants expressed in terms of the product of an appropriate initial approximant and a polynomial adjustment. Probabilistic quantities such as percentage points and percentiles can also be accurately determined from approximation of the corresponding distribution functions. This algorithm is not only conceptually simple but also easy to implement. As illustrated by the first two numerical examples, the density functions so obtained are in good agreement with the exact values. Moreover, the proposed approximation algorithm can provide the more accurate quantities than direct approximation as shown in the last example.

Mosaicking Techniques of Aerial Photographs using the RANSAC Algorithm (RANSAC 방법을 이용한 항공 사진 모자이킹 기법)

  • Lim, In-Geun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.180-187
    • /
    • 2007
  • In this paper, we propose an automatic method which combines two or more images acquired by camera on the air-vehicle into a larger image mosaics. The shift, scaling, rotation factors between two images can be calculated by using the correspondences between the points of the images. In order to estimate these factors, we find the relative positions of two images with respect to each other by using the SIFT descriptor and the RANSAC algorithm. After estimating the factors, the images can be merged into a single image mosaic by warping the target image. To avoid seams when mosaics are constructed from overlapped images, we apply the average gray level value of points within a overlapped zone. We have tested our proposed method on various image sets and have confirmed that our method produced good result subjectively.