본 논문에서는 IEEE 802.11ax에서 제안하는 임의 접근 기술을 이용한 무선랜 기반 센서 네트워크의 접속 기법을 제안한다. 제안하는 기법은 상향 데이터를 가지고 있는 예비 접속 단말들에 대하여 접속, 대기, 포기의 세 구간으로 나누어진 정수 단위의 OFDMA BackOFF counter (OBO)를 임의로 선택하게 하여 센서 단말의 실질적인 접속을 제어할 수 있다. 제안하는 기법은 비행기 등과 같이 다수의 센서와 연결이 필요한 센서 네트워크에 효과적으로 사용할 수 있다. 제안하는 방법을 사용하면, 기체내의 센서들은 본 논문에서 제안한 차등 OBO 매개변수를 사용한 접속 방법에 따라 접속을 시도하여 접속 용량을 초과하는 수의 단말을 효과적으로 제어할 수 있다. 또한 본 논문은 제안하는 기법에서 최적의 효율을 얻기 위한 관련 파라미터들에 대한 수학적 분석을 함께 제공한다. 본 논문의 분석 결과에 따르면 제안하는 기법을 통해 다수의 센서들의 접속이 최적의 효율에 가깝게 관리되었다.
센서 네트워크는 무선 채널의 근본적인 보안상의 취약점 이외에도 센서 노드 자체의 하드웨어적인 제약 사항을 가진다. 따라서 보안성을 보장해 주기 위해 기존의 무선통신 네트워크와는 다른 접근이 필요하다. 즉 인증 방법의 경량화를 통해서 저 사양의 센서 노드에서 동작 가능하고 보안체계 작동 시에 네트워크의 성능을 유지 할 수 있도록 해야 한다. 본 논문에서는 이러한 센서 네트워크가 가지는 특징들을 고려하여 네트워크 성능과 보안성 사이에서의 절충점을 만족시킬 수 있는 데이터 origin인증 방법에 대해 논의하였다. 이것은 각 센서 노드들이 클러스터 헤드와 스타 토폴로지 형태로 연결된 센서 네트워크에서 메시지에 특수한 인증코드의 첨부로 네트워크 성능은 유지하면서 주고받는 메시지의 origin인증을 가능하게 하는 challenge-response 방식의 인증방식이다. 이때 사용되는 특수한 코드는 질의코드와 응답코드의 순서쌍이 오직 하나만 존재하는 특징을 가진 유일순차코드로서, 본 논문에서는 이를 생성하는 방법과 생성된 코드의 인증 적용 방법에 대해서 설명하고 공격에 대한 안전성에 대해서 논의 한다.
우리는 응급실을 방문한 65세 이상 노인환자의 의료 데이터를 각각 피드 포워드 신경망과 합성곱 신경망에 학습하여 사망률을 예측하였다. 의료 데이터는 노인환자의 성별, 연령, 체온, 심박 수 등의 기초적인 정보뿐 아니라 과거 병력, 다양한 혈액 검사 및 배양 검사 결과 등 다양하고 복잡한 정보를 포함하여 총 99가지의 자질로 구성된다. 이 중 사망률 예측에 크게 기여하는 자질을 선택하기 위해 랜덤 포레스트를 이용하여 자질의 중요도를 계산하였고, 그 결과 중요도가 높은 상위 80개의 자질을 선택하였다. 선택된 자질을 각각 피드 포워드 신경망과 합성곱 신경망의 학습에 사용하여 두 신경망의 성능을 비교하였다. 합성곱 신경망 학습을 위해 의료 데이터를 고정된 크기의 이미지로 변환하였으며 합성곱 신경망이 피드 포워드 신경망을 이용한 것보다 성능이 좋았다. 합성곱 신경망의 사망률 예측 성능으로 테스트 데이터에 대해 F1 점수는 56.9, AUC는 92.1을 각각 얻었다.
International Journal of Computer Science & Network Security
/
제23권8호
/
pp.177-189
/
2023
Malware detection is an increasingly important operational focus in cyber security, particularly given the fast pace of such threats (e.g., new malware variants introduced every day). There has been great interest in exploring the use of machine learning techniques in automating and enhancing the effectiveness of malware detection and analysis. In this paper, we present a deep recurrent neural network solution as a stacked Long Short-Term Memory (LSTM) with a pre-training as a regularization method to avoid random network initialization. In our proposal, we use global and short dependencies of the inputs. With pre-training, we avoid random initialization and are able to improve the accuracy and robustness of malware threat hunting. The proposed method speeds up the convergence (in comparison to stacked LSTM) by reducing the length of malware OpCode or bytecode sequences. Hence, the complexity of our final method is reduced. This leads to better accuracy, higher Mattews Correlation Coefficients (MCC), and Area Under the Curve (AUC) in comparison to a standard LSTM with similar detection time. Our proposed method can be applied in real-time malware threat hunting, particularly for safety critical systems such as eHealth or Internet of Military of Things where poor convergence of the model could lead to catastrophic consequences. We evaluate the effectiveness of our proposed method on Windows, Ransomware, Internet of Things (IoT), and Android malware datasets using both static and dynamic analysis. For the IoT malware detection, we also present a comparative summary of the performance on an IoT-specific dataset of our proposed method and the standard stacked LSTM method. More specifically, of our proposed method achieves an accuracy of 99.1% in detecting IoT malware samples, with AUC of 0.985, and MCC of 0.95; thus, outperforming standard LSTM based methods in these key metrics.
KSII Transactions on Internet and Information Systems (TIIS)
/
제17권7호
/
pp.1759-1772
/
2023
Chinese named entity recognition (NER) is a challenging work that seeks to find, recognize and classify various types of information elements in unstructured text. Due to the Chinese text has no natural boundary like the spaces in the English text, Chinese named entity identification is much more difficult. At present, most deep learning based NER models are developed using a bidirectional long short-term memory network (BiLSTM), yet the performance still has some space to improve. To further improve their performance in Chinese NER tasks, we propose a new NER model, IDCNN-BiLSTM-Highway, which is a combination of the BiLSTM, the iterated dilated convolutional neural network (IDCNN) and the highway network. In our model, IDCNN is used to achieve multiscale context aggregation from a long sequence of words. Highway network is used to effectively connect different layers of networks, allowing information to pass through network layers smoothly without attenuation. Finally, the global optimum tag result is obtained by introducing conditional random field (CRF). The experimental results show that compared with other popular deep learning-based NER models, our model shows superior performance on two Chinese NER data sets: Resume and Yidu-S4k, The F1-scores are 94.98 and 77.59, respectively.
최근 기업에서는 드론을 이용하여 다양한 상업적인 서비스를 시도하고 있다. 특히, 드론을 이용한 택배서비스가 그 좋은 예라고 할 수 있다. 그러나, 이러한 드론 택배시스템은 사람들이 활보하는 거리 위에서 무거운 물건들을 배송하는 일이기 때문에 서로 충돌로 인한 소포가 떨어지는 등 다양한 사안을 고려해야만 한다. 이러한 문제점을 해결하기 위해 본 논문에서는 드론간 통신을 활용하고자 하며 예상되는 드론의 통신망 토폴로지를 Opnet 시뮬레이터로 구현하고, 해당 통신망의 성능을 시뮬레이션하고 분석하였다. 추가적으로 자유 운동적(random mobility)인 이동경로의 토폴로지도 구현하여 제안한 드론망의 성능과 비교분석하였다.
International journal of advanced smart convergence
/
제5권1호
/
pp.23-29
/
2016
The information is to be considered as important part of any network, the communication nodes within network can able to communicate and transmit information by the means of configured LAN/WAN, or/and using internet technology. Thus, vast enhancement has been made in- exchanging of information over transmission media, this should be beneficial in various disciplines of modern client/server applications but at other side, several massive vulnerabilities have been directly/in-directly associated with them. To resolve the security issues, a security mechanism is proposed which hide the sensitive information of images before transmitting to networks. Random size image samples have used and encrypted to protect them from unauthorized entities. The encryption mechanism manipulates the sample images, and corresponding secret codes are generated which help to protect the images from adversaries. To provide an indestructible security mechanism, cryptography algorithms are deployed and considered as best solutions to keep the secret information of images.
In this paper, we study the problem of selfish behavior of secondary users (SUs) based on cognitive radio (CR) with the presence of primary users (PUs). SUs are assumed to contend on a channel using the carrier sense multiple access with collision avoidance (CSMA/CA) and PUs do not consider transmission of SUs, where CSMA/CA protocols rely on the random deference of packets. SUs are vulnerable to selfish attacks by which selfish users could pick short random deference to obtain a larger share of the available bandwidth at the expense of other SUs. In this paper, game theory is used to study the systematic cheating of SUs in the presence of PUs in multichannel CR networks. We study two cases: A single cheater and multiple cheaters acting without any restraint. We identify the Pareto-optimal point of operation of a network with multiple cheaters and also derive the Nash equilibrium of the network. We use cooperative game theory to drive the Pareto optimality of selfish SUs without interfering with the activity of PUs. We show the influence of the activity of PUs in the equilibrium of the whole network.
This study investigates the efficiencies of machine learning models, including artificial neural network (ANN), generalized regression neural network (GRNN), adaptive neuro-fuzzy inference system (ANFIS) and random forest (RF), for reservoir water level forecasting in the Chungju Dam, South Korea. The models' efficiencies are assessed based on model efficiency indices and graphical comparison. The forecasting results of the models are dependent on lead times and the combination of input variables. For lead time t = 1 day, ANFIS1 and ANN6 models yield superior forecasting results to RF6 and GRNN6 models. For lead time t = 5 days, ANN1 and RF6 models produce better forecasting results than ANFIS1 and GRNN3 models. For lead time t = 10 days, ANN3 and RF1 models perform better than ANFIS3 and GRNN3 models. It is found that ANN model yields the best performance for all lead times, in terms of model efficiency and graphical comparison. These results indicate that the optimal combination of input variables and forecasting models depending on lead times should be applied in reservoir water level forecasting, instead of the single combination of input variables and forecasting models for all lead times.
KSII Transactions on Internet and Information Systems (TIIS)
/
제10권5호
/
pp.2081-2101
/
2016
Successive interference cancellation (SIC) is considered to be a promising technique to mitigate multi-user interference and achieve concurrent uplink transmissions, but the optimal power allocation (PA) issue for SIC users is not well addressed. In this article, we focus on the optimization of the PA ratio of users on an SIC channel and analytically obtain the optimal PA ratio with regard to the signal-to-interference-plus-noise ratio (SINR) threshold for successful demodulation and the sustainable demodulation error rate. Then, we design an efficient resource allocation (RA) scheme using the obtained optimal PA ratio. Finally, we compare the proposal with the near-optimum RA obtained by a simulated annealing search and the RA scheme with random PA. Simulation results show that our proposal achieves a performance close to the near-optimum and much higher performance than the random scheme in terms of total utility and Jain's fairness index. To demonstrate the applicability of our proposal, we also simulate the proposal in various network paradigms, including wireless local area network, body area network, and vehicular ad hoc network.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.