• 제목/요약/키워드: random material properties

검색결과 193건 처리시간 0.021초

MPCVD법으로 증착된 다이아몬드 박막 특성에 미치는 메탄가스의 영향 (Effect of Methane Gases on the Properties of Diamond Thin Films Synthesized by MPCVD)

  • 송진수;남태운
    • 한국전기전자재료학회논문지
    • /
    • 제24권3호
    • /
    • pp.229-233
    • /
    • 2011
  • Diamond thin films were deposited on pretreated Co cemented tungsten carbide (WC-6%Co) inserts as substrate by microwave plasma chemical vapor deposition (MPCVD) system, equipped with a 915MHz, 30kW generator for generating a large-size plasma. The substrates were pretreated with two solutions Murakami solution $[KOH:K_3Fe(CN)_6:H_2O]$ and nitric solution $[HNO_3:H_2O]$ to etch, WC and Co at cemented carbide substrates, respectively. The deposition experiments were performed at an input power of 10 kW and in a total pressure of 100 torr. The influence of various $CH_4$ contents on the crystallinity and morphology of the diamond films deposited in MPCVD was investigated using scanning electron microscopy (SEM) and Raman spectroscopy. The diamond film synthesized by the $CH_4$ plasma shows a triangle-faceted (111) diamond. As $CH_4$ contents was increased, the thickness of diamond films increased and the faceted planes disappeared. Finally, Faceted diamond changed into nano-crystalline diamond with random crystallinity.

Temperature dependent buckling analysis of graded porous plate reinforced with graphene platelets

  • Wei, Guohui;Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • 제39권3호
    • /
    • pp.275-290
    • /
    • 2021
  • The main purpose of this research work is to investigate the critical buckling load of functionally graded (FG) porous plates with graphene platelets (GPLs) reinforcement using generalized differential quadrature (GDQ) method at thermal condition. It is supposed that the GPL nanofillers and the porosity coefficient vary continuously along the plate thickness direction. Generally, the thermal distribution is considered to be nonlinear and the temperature changing continuously through the thickness of the nanocomposite plates according to the power-law distribution. To model closed cell FG porous material reinforced with GPLs, Halpin-Tsai micromechanical modeling in conjunction with Gaussian-Random field scheme are used, through which mechanical properties of the structures can be extracted. Based on the third order shear deformation theory (TSDT) and the Hamilton's principle, the equations of motion are established and solved for various boundary conditions (B.Cs). The fast rate of convergence and accuracy of the method are investigated through the different solved examples and validity of the present study is evaluated by comparing its numerical results with those available in the literature. A special attention is drawn to the role of GPLs weight fraction, GPLs patterns through the thickness, porosity coefficient and distribution of porosity on critical buckling load. Results reveal that the importance of thermal condition on of the critical load of FGP-GPL reinforced nanocomposite plates.

7075-T6 A1 합금의 피로균열진전의 변동성에 대한 확률론적 해석 (A Stochastic Analysis of Variation in Fatigue Crack Growth of 7075-T6 Al alloy)

  • 김정규;심동석
    • 대한기계학회논문집A
    • /
    • 제20권7호
    • /
    • pp.2159-2166
    • /
    • 1996
  • The stochastic properties of variation in fatigue crack growth are important in reliability and stability of structures. In this study,the stochastic model for the variation of fatigue crack growth rate was proposed in consideration of nonhomogeneity of materials. For this model, experiments were ocnducted on 7075-T6 aluminum alloy under the constant stress intensity factor range. The variation of fatigue crack growth rate was expressed by random variables Z and r based on the variation of material coefficients C and m in the paris-Erodogan's equation. The distribution of fatigue life with respect to the stress intensity factor range was evaluated by the stochastic Markov chain model based on the Paris-Erdogan's equation. The merit of proposed model is that only a small number of test are required to determine this this function, and fatigue crack growth life is easily predicted at the given stress intensity factor range.

기하형상의 임의교란이 음향산란에 미치는 영향 (Effect of Random Geometry Perturbation on Acoustic Scattering)

  • 주관정
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1992년도 추계학술대회논문집; 반도아카데미, 20 Nov. 1992
    • /
    • pp.117-123
    • /
    • 1992
  • In recent years, the finite element method has become one of the most popular numerical technique for obtaining solutions of engineering science problems. However, there exist various uncertainties in modeling the problems, such as the dimensions(geometry shape), the material properties, boundary conditions, etc. The consideration for the uncertainties inherent in the problems can be made by understanding the influences of uncertain parameters[1]. Determining the influences of uncertainties as statistical quantities using the standard finite element method requires enormous computing time, while the probabilistic finite element method is realized as an efficient scheme[2,3] yielding statistical solution with just a few direct computations. In this paper, a formulation of the probabilistic fluid-structure interaction problem accounting for the first order perturbation of geometric shape is derived, and especially probabilistical acoustic pressure scattering from the structure with surrounding fluid is focused on. In Section 2, governing equations for the fluid-structure problems are given. In Section 3, a finite element formulation, based on the functional, is presented. First order perturbation of geometric shape with randomness is incorporated into the finite element formulation in conjunction with discretization of the random fields in Section 4 and 5. Finally, the proposed formulation is applied to a acoustic pressure scattering problem from an infinitely long cylindrical shell structure with randomness of radial perturbation.

  • PDF

복합적층판의 비선형 불규칙 진동 해석에 관한 고전 이론, 1차 및 3차 전단 이론의 비교 연구 (Nonlinear Random Vibration of Laminated Composite Plates by Comparison of Classical Theory, 1st and 3rd Order Shear Theories)

  • Kang, Joowon
    • 한국전산구조공학회논문집
    • /
    • 제13권1호
    • /
    • pp.129-138
    • /
    • 2000
  • 새로운 공학재료의 하나인 복합재료는 뛰어난 역학적 성질로 인해 공학 전 분야에 걸쳐 사용이 점진적으로 증가하고 있다. 이 복합재료에 대한 개발뿐만 아니라 정적 혹은 동적 하중을 받는 복합 구조물의 연구는 많이 수행되어 왔고 대부분 가해지는 하중은 확정적인 것으로 가정되었다. 그러나 실제 많은 상황에 있어 구조물에 가해지는 하중의 성질은 불규칙적이다. 본 연구에서는 불규칙 진동을 받는 복합적층판의 비선형 해석을 유한요소법에 의거하여 해석하였으며 고전 판 이론과 전단변형을 고려한 1차, 3차 이론을 비교 분석하였다. 많은 복합재료들은 전단 변형에 있어 재료적인 비선형을 나타내므로 이를 본 연구에 포함하였다.

  • PDF

Modeling mesoscale uncertainty for concrete in tension

  • Tregger, Nathan;Corr, David;Graham-Brady, Lori;Shah, Surendra
    • Computers and Concrete
    • /
    • 제4권5호
    • /
    • pp.347-362
    • /
    • 2007
  • Due to heterogeneities at all scales, concrete exhibits significant variability in mechanical behavior from sample to sample. An understanding of the fundamental mechanical performance of concrete must therefore be embedded in a stochastic framework. The current work attempts to address the connection between a two-dimensional concrete mesostructure and the random local material properties associated within that mesostructure. This work builds on previous work that has focused on the random configuration of concrete mesostructures. This was accomplished by developing an understanding of the effects of variations in the mortar strength and the mortar-aggregate interfacial strength in given deterministic mesostructural configurations. The results are assessed through direct tension tests that are validated by comparing experimental results of two different, pre-arranged mesostructures, with the intent of isolating the effect of local variations in strength. Agreement is shown both in mechanical property values as well as the qualitative nature of crack initiation and propagation.

Natural frequency of bottom-fixed offshore wind turbines considering pile-soil-interaction with material uncertainties and scouring depth

  • Yi, Jin-Hak;Kim, Sun-Bin;Yoon, Gil-Lim;Andersen, Lars Vabbersgaard
    • Wind and Structures
    • /
    • 제21권6호
    • /
    • pp.625-639
    • /
    • 2015
  • Monopiles have been most widely used for supporting offshore wind turbines (OWTs) in shallow water areas. However, multi-member lattice-type structures such as jackets and tripods are also considered good alternatives to monopile foundations for relatively deep water areas with depth ranging from 25-50 m owing to their technical and economic feasibility. Moreover, jacket structures have been popular in the oil and gas industry for a long time. However, several unsolved technical issues still persist in the utilization of multi-member lattice-type supporting structures for OWTs; these problems include pile-soil-interaction (PSI) effects, realization of dynamically stable designs to avoid resonances, and quick and safe installation in remote areas. In this study, the effects of PSI on the dynamic properties of bottom-fixed OWTs, including monopile-, tripod- and jacket-supported OWTs, were investigated intensively. The tower and substructure were modeled using conventional beam elements with added mass, and pile foundations were modeled with beam and nonlinear spring elements. The effects of PSI on the dynamic properties of the structure were evaluated using Monte Carlo simulation considering the load amplitude, scouring depth, and the uncertainties in soil properties.

전도성을 가지는 하이브리드 Ti2AlN 세라믹 복합체의 마이크로 방전드릴링에서 가공성 평가 (Machinability Evaluation of Hybrid Ti2 Ceramic Composites with Conductivity in Micro Electrical Discharge Drilling Operation)

  • 허재영;정영근;강명창
    • 한국분말재료학회지
    • /
    • 제20권4호
    • /
    • pp.285-290
    • /
    • 2013
  • $Ti_2AlN$ composites are a laminated compounds that posses unique combination of typical ceramic properties and typical metallic(Ti alloy) properties. In this paper, the powder synthesis, SPS sintering, composite characteristics and machinability evaluation were systematically conducted. The random orientation characteristics and good crystallization of the $Ti_2AlN$ phase are observed. The electrical and thermal conductivity of $Ti_2AlN$ is higher than that of Ti6242 alloy. A machining test was carried out to compare the effect of material properties on micro electrical discharge drilling for $Ti_2AlN$ composite and Ti6242 alloy. Also, mixture table as a kind of tables of orthogonal arrays was used to know how parameter is main effective at experimental design. Consequently, hybrid $Ti_2AlN$ ceramic composites showed good machining time and electrode wear shape under micro ED-drilling process. This conclusion proves the feasibility in the industrial applications.

Dielectric Properties of Ti-doped K(Ta,Nb)O3 Thin Films for Tunable Microwave Applications

  • Bae Hyung-Jin;Koo Jayl;Hong Jun-Pyo
    • Journal of Electrical Engineering and Technology
    • /
    • 제1권1호
    • /
    • pp.120-126
    • /
    • 2006
  • Ferroelectric materials have been widely investigated for high density dynamic random access memories, opto-electrics, and tunable microwave devices due to their properties. In this study, we have investigated the dielectric properties of Ti doped $K(Ta,\;Nb)O_3$ thin films. By doping Ti Into the $K(Ta,Nb)O_3$ system, Ti with a valence value of +4 will substitute Ta or Nb ions with a valence value of +5. This substitution will introduce an acceptor state. Therefore, this introduced acceptor state will reduce dielectric loss by trapping electrons. Using 3% Ti-doped $K(Ta,Nb)O_3\;targets,\;K(Ta,Nb)O_3$:Ti films were grown in MgO(001) crystals using pulsed laser deposition. First, growth conditions were optimized. A reduction in the loss tangent was observed for Ti-doped $K(Ta,Nb)O_3$ relative to undoped films, although a reduction in tunability is also seen. The crystallinity, morphology, and tunability of $K(Ta,Nb)O_3$:Ti films are reported.

복합재 미익 구조의 신뢰성 기반 확률론적 구조해석 (The Reliability-Based Probabilistic Structural Analysis for the Composite Tail Plane Structures)

  • 이석제;김인걸
    • 한국군사과학기술학회지
    • /
    • 제15권1호
    • /
    • pp.93-100
    • /
    • 2012
  • In this paper, the deterministic optimal design for the tail plane made of composite materials is conducted under the deterministic loading condition and compared with that of the metallic materials. Next, the reliability analysis with five random variables such as loading and material properties of unidirectional prepreg is conducted to examine the probability of failure for the deterministic optimal design results. The MATLAB programing is used for reliability analysis combined with FEA S/W(COMSOL) for structural analysis. The laminated composite is assumed to the equivalent orthotropic material using classical laminated plate theory. The response surface methodology and importance sampling technique are adopted to reduce computational cost with satisfying the accuracy in reliability analysis. As a result, structural weight of composite materials is lighter than that of metals in deterministic optimal design. However, the probability of failure for the deterministic optimal design of the tail plane structures is too high to be neglected. The sensitivity of each variable is also estimated using probabilistic sensitivity analysis to figure out which variables are sensitive to failure. The computational cost is considerably reduced when response surface methodology and importance sampling technique are used. The study of the computationally inexpensive method for reliability-based design optimization will be necessary in further work.