• Title/Summary/Keyword: random loads

Search Result 220, Processing Time 0.029 seconds

Application of lattice probabilistic neural network for active response control of offshore structures

  • Kim, Dong Hyawn;Kim, Dookie;Chang, Seongkyu
    • Structural Engineering and Mechanics
    • /
    • v.31 no.2
    • /
    • pp.153-162
    • /
    • 2009
  • The reduction of the dynamic response of an offshore structure subjected to wind-generated random ocean waves is of extreme significance in the aspects of serviceability, fatigue life and safety of the structure. In this study, a new neuro-control scheme is applied to the vibration control of a fixed offshore platform under random wave loads to examine the applicability of the proposed method. It is called the Lattice Probabilistic Neural Network (LPNN), as it utilizes lattice pattern of state vectors as the training data of PNN. When control results of the LPNN are compared with those of the NN and PNN, LPNN showed better performance in effectively suppressing the structural responses in a shorter computational time.

A Prediction of Crack Propagation Rate under Random Loading (랜덤하중에서의 균열전파속도 추정법에 관한 연구)

  • 표동근;안태환
    • Journal of Ocean Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.115-123
    • /
    • 1994
  • Under variable amplitude loading conditions, retardation or accelerated condition of fatigue crack growth occurs with every cycle, Because fatigue crack growth behavior varied depend on load time history. The modeling of stress amplitude with storm loading acted to ships and offshore structures applied this paper. The crack closure behavior examine by recording the variation in load-strain relationship. By taking process mentioned above, fatigue crack growth rate, crack length, stress intensity factor, and crack closure stress intensity factor were obtained from the stress cycles of each type of storm ; A(6m), B(7m), C(8m), D(9m), E(11m) and F(15m) which was wave height. It showed that the good agreement with between the experiment results and simulation of storm loads. So this estimated method of crack propagtion rate gives a good criterion for the safe design of vessels and marine structure.

  • PDF

Structural Health Monitoring Using Wavelet Packet Transform (웨이블렛 팩킷변환을 이용한 구조물의 이상상태 모니터링)

  • Kim, Han-Sang;Yun, Chung-Bang
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.619-624
    • /
    • 2004
  • In this research, the structural health monitoring method using wavelet packet analysis and artificial neural network (ANN) is developed. Wavelet packet Transform (WPT) is applied to the response acceleration of a 3 element-cantilever beam which is subjected to impulse load and Gaussian random load to decompose the response signal, then the energy of each component is calculated. The first ten largest components in magnitude among the decomposed components are selected as input to an ANN to identify the damage location and severity. This method successfully predicted the amount of damage in the structure when the structure is subjected to impulse load. However, when the beam is subjected to Gaussian random load which can be considered as ambient vibration it did not yield satisfactory results. This method is applicable to structures such as machinery gears that are subjected to repetitive loads.

  • PDF

Adaptive backstepping control with grey theory for offshore platforms

  • Hung, C.C.;Nguyen, T.
    • Ocean Systems Engineering
    • /
    • v.12 no.2
    • /
    • pp.159-172
    • /
    • 2022
  • To ensure stable performance, adaptive regulators with new theories are designed for steel-covered offshore platforms to withstand anomalous wave loads. This model shows how to control the vibration of the ocean panel as a solution using new results from Lyapunov's stability criteria, an evolutionary bat algorithm that simplifies computational complexity and utilities. Used to reduce the storage space required for the method. The results show that the proposed operator can effectively compensate for random delays. The results show that the proposed controller can effectively compensate for delays and random anomalies. The improved prediction method means that the vibration of the offshore structure can be significantly reduced. While maintaining the required controllability within the ideal narrow range.

Active Control of Offshore Structures for Wave Response Reduction Using Probabilistic Neural Network

  • Kim, Doo-Kie;Kim, Dong-Hyawn;Chang, Sang-Kil;Chang, Seong-Kyu
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.5 s.72
    • /
    • pp.1-8
    • /
    • 2006
  • Offshore structures are subjected to wave, wind, and earthquake loads. The failure of offshore structures can cause sea pollution, as well as losses of property and lives. Therefore, safety of the structure is an important issue. The reduction of the dynamic response of offshore towers, subjected wind generated random ocean waves, is a critical problem with respect to serviceability, fatigue life and safety of the structure. In this paper, a structural control method is proposed to control the vibration of offshore structures by the probabilistic neural network (PNN). The state vectors of the structure and control forces are used for training patterns of the PNN, in which control forces are prepared by linear quadratic regulator (LQR) control algorithm. The proposed algorithm is applied to a fixed offshore structure under random ocean waves. Active control of the fixed offshore structure using the PNN control algorithm shows good results.

Analyzing the Impact of Buffer Capacity on Crosspoint-Queued Switch Performance

  • Chen, Guo;Zhao, Youjian;Pei, Dan;Sun, Yongqian
    • Journal of Communications and Networks
    • /
    • v.18 no.3
    • /
    • pp.523-530
    • /
    • 2016
  • We use both theoretical analysis and simulations to study the impact of crosspoint-queued (CQ) buffer size on CQ switch throughput and delay performance under different traffic models, input loads, and scheduling algorithms. In this paper, we present the following. 1) We prove the stability of CQ switch using any work-conserving scheduling algorithm. 2) We present an exact closed-form formula for the CQ switch throughput and a non-closed-form but convergent formula for its delay using static non-work-conserving random scheduling algorithms with any given buffer size under independent Bernoulli traffic. 3) We show that the above results can serve as a conservative guide on deciding the required buffer size in pure CQ switches using work-conserving algorithms such as the random scheduling, under independent Bernoulli traffic. 4) Furthermore, our simulation results under real-trace traffic show that simple round-robin and random work-conserving algorithms can achieve quite good throughput and delay performance with a feasible crosspoint buffer size. Our work reveals the impact of buffer size on the CQ switch performance and provides a theoretical guide on designing the buffer size in pure CQ switch, which is an important step toward building ultra-high-speed switch fabrics.

Dynamic responses of a freestanding bridge tower under wave and wave-current loads

  • Wei, Chengxun;Wang, Wenjing;Zhou, Daocheng
    • Structural Engineering and Mechanics
    • /
    • v.82 no.4
    • /
    • pp.491-502
    • /
    • 2022
  • A model experiment with a scale of 1:150 has been conducted to investigate the dynamic responses of a freestanding four-column bridge tower subjected to regular wave, random wave and coupled wave-current actions. The base shear forces of the caisson foundation and the dynamic behaviors of the superstructure were measured and analyzed. The comparisons of the test values with the theoretical values shows that wave-induced base shear forces on the bridge caisson foundation can be approximated by using a wave force calculation method in which the structure is assumed to be fixed and rigid. Although the mean square errors of the base shear forces excited by joint random wave and current actions are approximately equal to those excited by pure random waves, the existence of a forward current increases the forward base shear forces and decreases the backward base shear forces. The tower top displacements excited by wave-currents are similar to those excited by waves, suggesting that a current does not significantly affect the dynamic responses of the superstructure of the bridge tower. The experiment results can be used as a reference for similar engineering design.

Effects of Initial Anisotropy in the Plane Sheet on Stretching Process (판재의 초기 이방성이 스트레칭 성형에 미치는 영향)

  • 배석용;이용신
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.03a
    • /
    • pp.242-245
    • /
    • 1998
  • Effects of the anisotrpy due to the initial textures in the plane sheet on plane strain punch stretching has been investigated. In this study, the anisotropy from textures in the sheet is incoporated into the finite element process model by combining the theory of crstal plasticity. Three different textures such as random texture, plane strain compression texture and cube texture are considered. Variations of puch loads as well as thickness distributions of the sheets with three different initial textures are investigated.

  • PDF

Reliability Analysis Method for Concrete Containment Structures (콘크리트 차폐(遮蔽) 구조물(構造物)의 신뢰성(信賴性) 해석방법(解析方法))

  • Han, Bong Koo;Chang, Sung Pil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.1
    • /
    • pp.9-16
    • /
    • 1990
  • The safety of concrete nuclear containment structures should be secured against all kinds of loading due to various natural disasters or extraordinary accidental loads. The current design criteria of concrete containment structures are not based on the reliabillty-based design concept but rely on the conventional design concept. In this paper, a probabillty-based reliability analysis were proposed based on a FEM-based random vibration analysis and serviceability limit state of structures. The limit state model defined for the study is a serviceability limit state in terms of the more realistic crack failure that might cause the emission of radioactive materials, and the results are compared with those of the strength limit state. More accurate reliability analyses under various dynamic loads such as earthquake loads were made possible by incorporation the FEM and random vibration theory, which is different from the conventional reliability analysis method. The uncertainties in loads and resistance available in Korea and the refernces were adapted to the situation of Korea, and especially in the case of earthquake, the design earthquake was assessed based on the available re ports on probabilistic description of earthquake ground acceleration in the Korea peninsula.

  • PDF

Improvement of Dynamic Behavior of Shunt Active Power Filter Using Fuzzy Instantaneous Power Theory

  • Eskandarian, Nasser;Beromi, Yousef Alinejad;Farhangi, Shahrokh
    • Journal of Power Electronics
    • /
    • v.14 no.6
    • /
    • pp.1303-1313
    • /
    • 2014
  • Dynamic behavior of the harmonic detection part of an active power filter (APF) has an essential role in filter compensation performances during transient conditions. Instantaneous power (p-q) theory is extensively used to design harmonic detectors for active filters. Large overshoot of p-q theory method deteriorates filter response at a large and rapid load change. In this study the harmonic estimation of an APF during transient conditions for balanced three-phase nonlinear loads is conducted. A novel fuzzy instantaneous power (FIP) theory is proposed to improve conventional p-q theory dynamic performances during transient conditions to adapt automatically to any random and rapid nonlinear load change. Adding fuzzy rules in p-q theory improves the decomposition of the alternating current components of active and reactive power signals and develops correct reference during rapid and random current variation. Modifying p-q theory internal high-pass filter performance using fuzzy rules without any drawback is a prospect. In the simulated system using MATLAB/SIMULINK, the shunt active filter is connected to a rapidly time-varying nonlinear load. The harmonic detection parts of the shunt active filter are developed for FIP theory-based and p-q theory-based algorithms. The harmonic detector hardware is also developed using the TMS320F28335 digital signal processor and connected to a laboratory nonlinear load. The software is developed for FIP theory-based and p-q theory-based algorithms. The simulation and experimental tests results verify the ability of the new technique in harmonic detection of rapid changing nonlinear loads.