• Title/Summary/Keyword: random loads

Search Result 219, Processing Time 0.025 seconds

Moving Load Analysis of Bridge Structures Using Experimental Modal Data (실험적 모우드 계수를 이용한 교량의 주행하중 해석)

  • 이형진
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.3
    • /
    • pp.409-420
    • /
    • 2002
  • This paper proposed a technique of structural re-analysis for the evaluation of dynamic responses of bridge structure under moving loads using experimental modal results. For successful structural re-analysis, it is required to have accurate estimation techniques of the modal characteristics of bridge structures. The natural frequencies and mode shapes were identified by direct fourier analysis techniques and damping ratios by the random decrement method, respectively. An interpolation method was also proposed for the extension of mode shape measured on limited DOFs. Second, the structural reanalysis was performed using moving mass model and identified modal parameters. The results from the reanalysis show that the proposed technique is very reasonable to evaluate the actual behavior of bridge structures under moving loads.

Studies on Probabilistic Nonlinear First Ply Failure Loads and Buckling Loads of Laminated Composite Panels (적층복합재료 패널의 확률론적 비선형 초기파단하중 및 좌굴하중에 관한 연구)

  • Bang, Je-Sung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.6
    • /
    • pp.1-10
    • /
    • 2013
  • Probabilistic nonlinear first ply failure loads of flat composite panels and nonlinear buckling loads of curved composite panels with cutouts are estimated to provide the more reliable main load carrying structure in the renewable energy industry and offshore structures. The response surface method approximates limit state surface to a second order polynomial form of random variables with the results of deterministic finite element analyses at given sampling design points. Furthermore, the iterative linear interpolation scheme is used to obtain a more accurate approximation of the limit state surface near the most probable failure point (MPFP). The advanced first order second moment method and the Monte Carlo method are performed on an approximated limit state surface to evaluate the probability of failure. Finally, the sensitivity of the reliability index with respect to transformed random variables is investigated to figure out the main random variables that have an effect on failures.

Study of random characteristics of fluctuating wind loads on ultra-large cooling towers in full construction process

  • Ke, S.T.;Xu, L.;Ge, Y.J.
    • Wind and Structures
    • /
    • v.26 no.4
    • /
    • pp.191-204
    • /
    • 2018
  • This article presents a study of the largest-ever (height = 220 m) cooling tower using the large eddy simulation (LES) method. Information about fluid fields around the tower and 3D aerodynamic time history in full construction process were obtained, and the wind pressure distribution along the entire tower predicted by the developed model was compared with standard curves and measured curves to validate the effectiveness of the simulating method. Based on that, average wind pressure distribution and characteristics of fluid fields in the construction process of ultra-large cooling tower were investigated. The characteristics of fluid fields in full construction process and their working principles were investigated based on wind speeds and vorticities under different construction conditions. Then, time domain characteristics of ultra-large cooling towers in full construction process, including fluctuating wind loads, extreme wind loads, lift and drag coefficients, and relationship of measuring points, were studied and fitting formula of extreme wind load as a function of height was developed based on the nonlinear least square method. Additionally, the frequency domain characteristics of wind loads on the constructing tower, including wind pressure power spectrum at typical measuring points, lift and drag power spectrum, circumferential correlations between typical measuring points, and vertical correlations of lift coefficient and drag coefficient, were analyzed. The results revealed that the random characteristics of fluctuating wind loads, as well as corresponding extreme wind pressure and power spectra curves, varied significantly and in real time with the height of the constructing tower. This study provides references for design of wind loads during construction period of ultra-large cooling towers.

Fatigue Life Assessment of Journal Box Attached to Bogie under Multiaxial Random Dynamic Loading (다축 Random Dynamic 하중을 받는 대차 저널박스의 피로수명평가)

  • Park, Sang-Goo;Kim, Seung-Seob;Han, Sung-Wook;Park, Geun-Su;Woo, Kwan-Je
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1125-1131
    • /
    • 2009
  • This paper presents the evaluation of fatigue life for a journal box attached to rolling stock bogie under random dynamic loading condition. Because a journal box was under random dynamic loading conditions, the fatigue life assessment due to these loads requires the analysis considering the multiaxial effect of random dynamic loading. To do this work, the finite element analysis has been conducted to calculate random dynamic response using multiaxial acceleration data. Then, the fatigue life assessment of component has been conducted using vibration fatigue analysis applying the power spectral densities of the responses obtained through the FEA The results of fatigue life assessment were compared to the damage from the strain measurement. This study shows that can be evaluated the fatigue life assessment considering real service condition about a component attached to rolling stock bogie.

  • PDF

Stress Analysis of Top Hat Type Structure for Random Loading

  • M. J. Jhung;Kim, Y. B.;Lee, J. B.
    • Nuclear Engineering and Technology
    • /
    • v.29 no.6
    • /
    • pp.476-487
    • /
    • 1997
  • To resolve several arguments raised for the current analysis of a structure like top hat, which is composed of flange, cylinder and plate, the dynamic response analysis is performed for the full and half models. The dynamic characteristics are investigated for full and half models and the results are compared between them. The responses such as bolt reactions and stresses due to random loading are also obtained using the analysis capabilities between commercial programs which have the routine for the random vibration analysis. Several general purpose structural analysis programs are used to get the response due to the random loadings. Also the application of the random loading and the effect of correlations such as fully correlated, partially correlated and fully uncorrelated cases are studied and the general directions for the generation of design loads due to random loading are suggested.

  • PDF

LOAD COMBINATION CRITERIA FOR DESIGN OF NPP COINTAINMENT STRUCTURES (원자력 차폐 구조물의 설계하중 조합 규준)

  • Han, Bong-Koo;Cho, Hyo-Nam
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1989.10a
    • /
    • pp.19-24
    • /
    • 1989
  • The current load combination criteria for design of nuclear power plant structures are not based on the probability-based design concept but rely on the conventional design concept. In this paper, a load combination criteria for design of NPP coin-tainment structures are proposed based on a FEM-based random vibration analysis. More accurate reliability analyses under various dynamic loads such as earthquake loads were made possible by incorporating the FEM and random vibration theory, which is different from the conventional reliability analysis method. In this paper, the load factors for the design of NPP structures in Korea are proposed by considering appropriate fond combination criteria for design.

  • PDF

A Study on the Fatigue Characteristics and the Behavior of Crack Propagation by Overload and Bending Moment in Car Body Structure (차체구조물에서 면내 굽힘모우멘트 및 과하중이 피로특성과 균열전파 거동에 미치는 영향에 관한 연구)

  • 성기찬;장경복;정진우;강성수
    • Journal of Welding and Joining
    • /
    • v.19 no.6
    • /
    • pp.652-657
    • /
    • 2001
  • To analyze and predict crack initiation position and propagation directions on the spot welded area are very important for strength design of the automobile body structure. It is necessary to test by method considering random loads with variable amplitude for strength design of vehicle body structure, because driving cars are actually subjected to random loads with variable amplitude in the road. Although this condition, nearly all tests haute been performed under constant load conditions in the laboratory because it is impossible to replay like an actual conditions. In this study, using in-plane bending type specimens, the overload factor affecting on the fatigue strength, crack initiation and propagation directions of spot-welded specimens have been studied.

  • PDF

Load Combination Criteria for Dsing of NPP Containment Structures (원자력 차폐구조물의 설계하중 조합 규칙)

  • 한봉구;조효남
    • Computational Structural Engineering
    • /
    • v.3 no.1
    • /
    • pp.51-57
    • /
    • 1990
  • The current load combination criteria for design of nuclear power plant structures(NPP) are not based on the probability-based design concept but rely on the conventional design concept. In this paper, a load combination criteria for design of NPP containment structures are proposed based on a FEM-based random vibration analysis. More accurate reliability analyses under various dynamic loads such as earthquake loads were made possible by incorporating the FEM and random vibration theory, which is different from the conventional reliability analysis method, In this paper, the toad factors for the design of NPP structures in Korea are proposed by considering appropriate load combination criteria for design.

  • PDF

Stochastic ship roll motion via path integral method

  • Cottone, G.;Paola, M. Di;Ibrahim, R.;Pirrotta, A.;Santoro, R.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.2 no.3
    • /
    • pp.119-126
    • /
    • 2010
  • The response of ship roll oscillation under random ice impulsive loads modeled by Poisson arrival process is very important in studying the safety of ships navigation in cold regions. Under both external and parametric random excitations the evolution of the probability density function of roll motion is evaluated using the path integral (PI) approach. The PI method relies on the Chapman-Kolmogorov equation, which governs the response transition probability density functions at two close intervals of time. Once the response probability density function at an early close time is specified, its value at later close time can be evaluated. The PI method is first demonstrated via simple dynamical models and then applied for ship roll dynamics under random impulsive white noise excitation.

Nonlinear Vibration Analyses of Stiffened Composite Panels under Combined Thermal and Random Acoustic Loads (열-랜덤 음향 하중을 받는 보강된 복합재 패널의 비선형 진동 해석)

  • Choi, In-Jun;Lee, Hong-Beom;Park, Jae-Sang;Kim, In-Gul
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.533-541
    • /
    • 2020
  • This study using ABAQUS investigates the nonlinear vibration responses when thermal and random acoustic loads are applied simultaneously to the stiffened composite panels. The nonlinear vibration analyses are performed with changing the number of stiffeners, and layup condition of the skin panel. The panel and stiffeners both are modeled using shell elements. Thermal load (ΔT) is assumed to have the temperature gradient through the thickness direction of the stiffened composite panel. The random acoustic load is represented as stationary white-Gaussian random pressure with zero mean and uniform magnitude over the panels. The thermal postbuckling analysis is conducted using RIKS method, and the nonlinear dynamic analysis is performed using Hilber-HughesTaylor time integration method. When ΔT = 25.18 ℃ and SPL = 105 dB are applied to the stiffened composite panel, the effect of the number of stiffener is investigated, and the snap-through responses are observed for composite panels without stiffeners and with 1 and 3 stiffeners. For investigation of the effect of layup condition of the skin panel, when ΔT = 38.53 ℃ and SPL = 110 dB are applied to the stiffened composite panel, the snap-through responses are shown when the fiber angle of the skin panel is 0°, 30°, and 60°.