• Title/Summary/Keyword: random errors

Search Result 446, Processing Time 0.029 seconds

Statistical estimation of the epochs of observation for the 28 determinative stars in the Shi Shi Xing Jing and the table in Cheonsang Yeolcha Bunyajido (석씨성경과 천상열차분야지도의 이십팔수 수거성 관측 연도의 통계적 추정)

  • Ahn, Sang-Hyeon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.61.3-61.3
    • /
    • 2019
  • The epochs of observation for the 28 determinative stars in the Shi Shi Xing Jing and Cheonsang Yeolcha Bunyajido are estimated by using two fitting methods. The coordinate values in these tables were thought to be measured with meridian instruments, and so they have the axis-misalignment errors and random errors. We adopt a Fourier method, and also we devise a least square fitting method. We do bootstrap resamplings to estimate the variance of the epochs. As results, we find that both data sets were made during the 1st century BCE or the latter period of the Former Han dynasty. The sample mean of the epoch for the SSXJ data is earlier by about 15-20 years than that for the Cheonsang Yeolcha Bunyajido. However, their variances are so large that we cannot decide whether the Shi Shi Xing Jing data was formed around 77 BCE and the Cheonsang Yeolcha Bunyajido was measured in 52 BCE. We need either more data points or data points measured with better precision. We will discuss on the other 120 coordinates of stars listed in the Shi Shi Xing Jing.

  • PDF

Low versus standard central venous pressure during laparoscopic liver resection: A systematic review, meta-analysis and trial sequential analysis

  • Mina Stephanos;Christopher M. B. Stewart;Ameen Mahmood;Christopher Brown;Shahin Hajibandeh;Shahab Hajibandeh;Thomas Satyadas
    • Annals of Hepato-Biliary-Pancreatic Surgery
    • /
    • v.28 no.2
    • /
    • pp.115-124
    • /
    • 2024
  • To compare the outcomes of low central venous pressure (CVP) to standard CVP during laparoscopic liver resection. The study design was a systematic review following the PRISMA statement standards. The available literature was searched to identify all studies comparing low CVP with standard CVP in patients undergoing laparoscopic liver resection. The outcomes included intraoperative blood loss (primary outcome), need for blood transfusion, mean arterial pressure, operative time, Pringle time, and total complications. Random-effects modelling was applied for analyses. Type I and type II errors were assessed by trial sequential analysis (TSA). A total of 8 studies including 682 patients were included (low CVP group, 342; standard CVP group, 340). Low CVP reduced intraoperative blood loss during laparoscopic liver resection (mean difference [MD], -193.49 mL; 95% confidence interval [CI], -339.86 to -47.12; p = 0.01). However, low CVP did not have any effect on blood transfusion requirement (odds ratio [OR], 0.54; 95% CI, 0.28-1.03; p = 0.06), mean arterial pressure (MD, -1.55 mm Hg; 95% CI, -3.85-0.75; p = 0.19), Pringle time (MD, -0.99 minutes; 95% CI, -5.82-3.84; p = 0.69), operative time (MD, -16.38 minutes; 95% CI, -36.68-3.39; p = 0.11), or total complications (OR, 1.92; 95% CI, 0.97-3.80; p = 0.06). TSA suggested that the meta-analysis for the primary outcome was not subject to type I or II errors. Low CVP may reduce intraoperative blood loss during laparoscopic liver resection (moderate certainty); however, this may not translate into shorter operative time, shorter Pringle time, or less need for blood transfusion. Randomized controlled trials with larger sample sizes will provide more robust evidence.

Support Vector Machine and Improved Adaptive Median Filtering for Impulse Noise Removal from Images (영상에서 Support Vector Machine과 개선된 Adaptive Median 필터를 이용한 임펄스 잡음 제거)

  • Lee, Dae-Geun;Park, Min-Jae;Kim, Jeong-Uk;Kim, Do-Yoon;Kim, Dong-Wook;Lim, Dong-Hoon
    • The Korean Journal of Applied Statistics
    • /
    • v.23 no.1
    • /
    • pp.151-165
    • /
    • 2010
  • Images are often corrupted by impulse noise due to a noise sensor or channel transmission errors. The filter based on SVM(Support Vector Machine) and the improved adaptive median filtering is proposed to preserve image details while suppressing impulse noise for image restoration. Our approach uses an SVM impulse detector to judge whether the input pixel is noise. If a pixel is detected as a noisy pixel, the improved adaptive median filter is used to replace it. To demonstrate the performance of the proposed filter, extensive simulation experiments have been conducted under both salt-and-pepper and random-valued impulse noise models to compare our method with many other well known filters in the qualitative measure and quantitative measures such as PSNR and MAE. Experimental results indicate that the proposed filter performs significantly better than many other existing filters.

A study on the Analysis Method of Interference using SEAMCAT in UHF band (UHF대역에서의 SEAMCAT을 이용한 간섭 분석기법에 관한 연구)

  • Cho, Seung-Il;Jang, Kyoung-Seung;Kang, Sung-Chul;Lee, Joo-Hwan;Kang, Jeong-Jin;Choi, Gyoo-Seok;Cha, Jae-Sang;Kim, Seong-Kweon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.8 no.6
    • /
    • pp.119-125
    • /
    • 2008
  • In this paper, we proposed the modeling of UHF frequency environment in a random mountainous area with line of sight. A transmitting station is defined as wanted transmitter(Wr) and a receiving station is defined as victim receiver(Vr). These set up victim link. A interference transmitter(It) and wanted receiver(Wr) set up interference link. We compared measured data at random mountainous area with data of the result using spectrum engineering advanced monte calo analysis tool(SEAMCAT), interference simulation based on the monte-carlo method. The desired received signal strength(dRSS) of SEAMCAT had the calculated error of 70% from the measured received signal strength because there was a topographical effect. Therefore, the effect of diffraction interference was included to lessen the power of transmitter in the proposed simulation. The cause of received power error are cable loss and errors of a measuring instrument. The proposed simulation modeling in UHF frequency environment expect that is the useful study on interference analysis and reassignment of broadcasting frequency.

  • PDF

Clinical Application of Gamma Knife Dose Verification Method in Multiple Brain Tumors : Modified Variable Ellipsoid Modeling Technique

  • Hur, Beong Ik;Lee, Jae Min;Cho, Won Ho;Kang, Dong Wan;Kim, Choong Rak;Choi, Byung Kwan
    • Journal of Korean Neurosurgical Society
    • /
    • v.53 no.2
    • /
    • pp.102-107
    • /
    • 2013
  • Objective : The Leksell Gamma Knife$^{(R)}$ (LGK) is based on a single-fraction high dose treatment strategy. Therefore, independent verification of the Leksell GammaPlan$^{(R)}$ (LGP) is important for ensuring patient safety and minimizing the risk of treatment errors. Although several verification techniques have been previously developed and reported, no method has ever been tested statistically on multiple LGK target treatments. The purpose of this study was to perform and to evaluate the accuracy of a verification method (modified variable ellipsoid modeling technique, MVEMT) for multiple target treatments. Methods : A total of 500 locations in 10 consecutive patients with multiple brain tumor targets were included in this study. We compared the data from an LGP planning system and MVEMT in terms of dose at random points, maximal dose points, and target volumes. All data was analyzed by t-test and the Bland-Altman plot, which are statistical methods used to compare two different measurement techniques. Results : No statistical difference in dose at the 500 random points was observed between LGP and MVEMT. Differences in maximal dose ranged from -2.4% to 6.1%. An average distance of 1.6 mm between the maximal dose points was observed when comparing the two methods. Conclusion : Statistical analyses demonstrated that MVEMT was in excellent agreement with LGP when planning for radiosurgery involving multiple target treatments. MVEMT is a useful, independent tool for planning multiple target treatment that provides statistically identical data to that produced by LGP. Findings from the present study indicate that MVEMT can be used as a reference dose verification system for multiple tumors.

Accurate Roughness Measurement Using a Method for Evaluation and Interpolation of the Validity of Height Data from a Scanning White-light Interferometer

  • Kim, Namyoon;Lee, Seung Woo;I, Yongjun;Pahk, Heui-Jae
    • Current Optics and Photonics
    • /
    • v.1 no.6
    • /
    • pp.604-612
    • /
    • 2017
  • An effective and precise method using a scanning white-light interferometer (SWLI) for three-dimensional surface measurements, in particular for roughness measurements, has been proposed. The measurement of a microscopically sloped area using an interferometer has limitations, due to the numerical aperture of the lens. In particular, for roughness measurements, it is challenging to obtain accurate height data for a sloped area using the interferometer, due to diffraction of the light. Owing to these optical limitations of the interferometer for roughness measurements, the Ra measurements performed using an interferometer contain errors. To overcome the limitations, we propose a method consisting of the following two steps. First, we evaluate the height data and set the invalid height area to be blank, using the characteristics of the modulus peak, which has a low peak value for signals that have low reliability in the interferogram. Next, we interpolate the blank area using the adjacent reliable area. Rubert roughness standards are used to verify the proposed method. The results obtained by the proposed method are compared to those obtained with a stylus profilometer. For the considered sinusoidal samples, Ra ranges from $0.053{\mu}m$ to $6.303{\mu}m$, and we show that the interpolation method is effective. In addition, the method can be applied to a random surface where Ra ranges from $0.011{\mu}m$ to $0.164{\mu}m$. We show that the roughness results obtained using the proposed method agree well with profilometer results. The $R^2$ values for both sinusoidal and random samples are greater than 0.995.

An Implementation of the Dual Packet Seamless Transfer Protocol for Safety-related Railway Signaling System Network (철도 신호시스템의 Fail-Safe 네트워크를 위한 DPST(Dual Packet Seamless Transfer) 프로토콜의 구현)

  • Kim, Kyung-Shik;Ryu, Shin-Hyung;Kwon, Cheol;Lee, Jong-Seong
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.396-405
    • /
    • 2009
  • An interlocking equipment of railway signalling systems should have very high functional safety and reliability properties because of its vital railway protection functionality. In order to achieve the required safety and reliability level, an engineer, in general, designs and implements the interlocking equipment to operate under RTOS(Realtime Operating System) environment, and the control hardware architecture redundant to cope with the random failures of system or subsystem. In such an architecture, it's very difficult to implement the interlocking equipment to communicate with various interface systems including the signal operator's terminal. In this paper, we propose a dual ethernet network topology and dual packet seamless transfer protocol algorithm for railway signaling system such as the interlocking equipment. We verify in this paper that the proposed DPST protocol algorithm has the evidence of its robust properties against the random hardware faults and communication errors. The proposed communication structure and algorithm is implemented in the electronic interlocking equipment for the private railway system of Hyundai Steel Company and its performance and properties are validated on the guideline of European Railway Standard EN50159.

  • PDF

A Study on Image Reconstructing Algorithm in Uniformly Distributed Impulsive Noise Environment (균등 분포된 임펄스 잡음 환경에서의 영상 복원 알고리즘에 관한 연구)

  • Noh Hyun-Yong;Bae Sang-Bum;Kim Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.1001-1004
    • /
    • 2006
  • Many researches have been processed to reconstruct corrupted an image by noise in fields of signal processing such as image recognition and compute. vision, and AWGN(additive white gaussian noise) and impulse noise are representative. Impulse noise consists of fired-valued(salt & pepper) impulse noise and random-valued impulse noise, and non-linear filters such as SM(standard median) filters are used to remove this noise. But basic SM filters still generate many errors in edge regions of an image, and in order to overcome this problem a variety of methods have been researched. In this paper, we proposed an impulse noise removal algorithm which is superior to the edge preserving capacity. At this tine, after detecting a noise by using the noise detector, we applied a noise removal algorithm based on the min-max operation and compared the capacity with existing methods through simulation.

  • PDF

Automated Landmark Extraction based on Matching and Robust Estimation with Geostationary Weather Satellite Images (정합과 강인추정 기법에 기반한 정지궤도 기상위성 영상에서의 자동 랜드마크 추출기법 연구)

  • Lee Tae-Yoon;Kim Taejung;Choi Hae-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.6
    • /
    • pp.505-516
    • /
    • 2005
  • The Communications, Oceanography and Meteorology Satellite(COMS) will be launched in 2008. Ground processing for COMS includes the process of automatic image navigation. Image navigation requires landmark detection by matching COMS images against landmark chips. For automatic image navigation, a matching must be performed automatically However, if matching results contain errors, the accuracy of Image navigation deteriorates. To overcome this problem, we propose use of a robust estimation technique called Random Sample Consensus (RANSAC) to automatically detect erroneous matching. We tested GOES-9 satellite images with 30 landmark chips that were extracted from the world shoreline database. After matching, mismatch results were detected automatically by RANSAC. All mismatches were detected correctly by RANSAC with a threshold value of 2.5 pixels.

Optical Encryption of Binary Information using 2-step Phase-shifting Digital Holography (2-단계 위상 천이 디지털 홀로그래피를 이용한 이진 정보 광 암호화 기법)

  • Byun, Hyun-Joong;Gil, Sang-Keun
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.5
    • /
    • pp.401-411
    • /
    • 2006
  • We propose an optical encryption/decryption technique for a security system based on 2-step phase-shifting digital holography. Phase-shilling digital holography is used for recording phase and amplitude information on a CCD device. 2-step phase-shifting is implemented by moving the PZT mirror with phase step of 0 or ${\pi}/2$. The binary data and the key are expressed with random code and random phase patterns. The digital hologram is a Fourier transform hologram and is recorded on CCD with 256 gray level quantization. We remove the DC term of the digital hologram fur data reconstruction, which is essential to reconstruct the original binary input data/image. The error evaluation fer the decrypted binary data is analyzed. One of errors is a quantization error in detecting the hologram intensity on CCD, and the other is generated from decrypting the data with the incorrect key. The technique using 2-step phase-shifting holography is more efficient than a 4-step method because 2-step phase-shifting holography system uses less data than the 4-step method for data storage or transmission. The simulation shows that the proposed technique gives good results fur the optical encryption of binary information.