• 제목/요약/키워드: raman microscopy

검색결과 426건 처리시간 0.031초

화학기상증착법으로 성장시킨 4H-SiC 동종박막의 성장 특성 (Growth characteristics of 4H-SiC homoepitaxial layers grown by thermal CVD)

  • Jang, Seong-Joo;Jeong, Moon-Taeg;Seol, Woon-Hag;Park, Ju-Hoon
    • 한국결정성장학회:학술대회논문집
    • /
    • 한국결정성장학회 1999년도 PROCEEDINGS OF 99 INTERNATIONAL CONFERENCE OF THE KACG AND 6TH KOREA·JAPAN EMG SYMPOSIUM (ELECTRONIC MATERIALS GROWTH SYMPOSIUM), HANYANG UNIVERSITY, SEOUL, 06월 09일 JUNE 1999
    • /
    • pp.271-284
    • /
    • 1999
  • As a semiconductor material for electronic devices operated under extreme environmental conditions, silicon carbides (SiCs) have been intensively studied because of their excellent electrical, thermal and other physical properties. The growth characteristics of single-crystalline 4H-SiC homoepitaxial layers grown by a thermal chemical vapor deposition (CVD) were investigated. Especially, the successful growth condition of 4H-SiC homoepitaxial layers using a SiC-uncoated graphite susceptor that utilized Mo-plates was obtained. The CVD growth was performed in an RF-induction heated atmospheric pressure chamber and carried out using off-oriented substrates prepared by a modified Lely method. In order to investigate the crystallinity of grown epilayers, Nomarski optical microscopy, Raman spectroscopy, photoluminescence(PL), scanning electron microscopy (SEM) and other techniques were utilized. The best quality of 4H-SiC homoepitaxial layers was observed in conditions of growth temperature 1500$^{\circ}C$ and C/Si flow ratio 2.0 of C3H3 0.2sccm & SiH4 0.3sccm. The growth rate of epilayers was about 1.0$\mu\textrm{m}$/h in the above growth condition.

  • PDF

전처리 조건에 따른 탄소나노튜브의 성장 특성 (The growing characteristic carbon nanotubes depending on their pretreatment condition)

  • 정경호;홍병유
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 하계학술대회 논문집 Vol.4 No.2
    • /
    • pp.779-782
    • /
    • 2003
  • Hot filament 플라즈마 화학기상 증착법 (HFPECVD)를 사용하여 전처리 조건에 따른 탄소나노튜브의 성장 특성을 관찰하였다. 암모니아 ($NH_3$)를 희석가스로 사용하였고, 아세틸렌 ($C_2H_2$)를 탄소 원료가스로 각각 사용하였다. 암모니아 가스 플라즈마를 사용하여 전처리 된 니켈 촉매 층의 SEM (Scanning Electron Microscopy) 이미지를 관찰하여 본 결과, 나노 사이즈의 촉매 그레인(grain)을 발견할 수 있었다. 그리고 탄소 나노튜브의 직경과 성장 밀도 또한 전처리 된 촉매 층에 따라 다른 양상을 보였다. TEM (Transmission Electron Microscopy)를 사용하여 탄소나노튜브를 관찰한 결과 공동구조(hollow)를 한 다중벽 탄소 나노튜브(MWCNT)를 관찰할 수 있었다. 성장된 나노튜브는 끝에 금속팁을 가지고 있으며, 나노튜브의 팁은 촉매로 사용한 것과 같은 물질로 구성되어 있었다. Raman spectroscopy를 사용하여 측정된 B-밴드와 G-밴드의 피크들은 각각 $1360cm^{-1}$$1598cm^{-1}$ 부근에서 나타났으며, 전처리 조건을 달리하여 성장시킨 탄소나노튜브 필름에서 이들 두 피크의 위치는 이동하지 않았고, 두 피크의 강도 비율 ($I_G/I_D$)은 전처리 조건에 따라 변하였다.

  • PDF

Carbon nanospheres synthesized via solution combustion method: their application as an anode material and catalyst for hydrogen production

  • Dhand, Vivek;Rao, M. Venkateswer;Prasad, J.S.;Mittal, Garima;Rhee, Kyong Yop;Kim, Hyeon Ju;Jung, Dong Ho
    • Carbon letters
    • /
    • 제15권3호
    • /
    • pp.198-202
    • /
    • 2014
  • Amorphous agglomerates of carbon nanospheres (CNS) with a diameter range of 10-50 nm were synthesized using the solution combustion method. High-resolution transmission electron microscopy (HRTEM) revealed a densely packed high surface area of $SP^2$-hybridized carbon; however, there were no crystalline structural components, as can be seen from the scanning electron microscopy, HRTEM, X-ray diffraction, Raman spectroscopy, and thermal gravimetric analyses. Electrochemical and thermo catalytic decomposition study results show that the material can be used as a potential electrode candidate for the fabrication of energy storage devices and also for the production of free hydrogen if such devices are used in a fluidized bed reactor loaded with the as-prepared CNS as the catalyst bed.

탄소나노튜브의 열화학기상 합성에 미치는 수분 첨가의 영향 (Effect of water vapor on the growth of carbon nanotubes by thermal chemical vapor deposition)

  • 전홍준;김영래;이내성
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.415-415
    • /
    • 2008
  • 수분을 첨가한 열화학기상증착으로 $850^{\circ}C$에서 길게 수직 성장한 다중벽 탄소나노튜브를 합성하였다. 실리콘 웨이퍼에 열 증착기로 Al 15 nm를 입히고 그 위에 촉매 층으로 Fe 0.5 nm 를 증착한 기판을 사용하였다. 탄소나노튜브의 성장에는 분위기 가스로 Ar을, 성장 가스로 $C_2H_2$를 사용하였다. 이들 가스를 이용한 합성 중에 약 100 ppm 전후의 수분을 첨가함으로써 탄소나노튜브의 성장 길이를 10 배 가량 증가시켰다. 이것은 합성 중의 수분 첨가로 인해 금속촉매 입자들의 활동성이 증가하였기 때문이다. 수분의 첨가량를 달리하여 합성한 탄소나노튜브의 길이와 정렬도를 관찰하기 위해 주사전자현미경 (scanning electron microscopy, SEM)을 이용하였고, 탄소나노튜브의 정확한 지름과 벽의 개수를 파악하기 위해 투과전자현미경 (transmission electron microscopy)을, 결정성을 파악하기 위해 Raman 분광기를 사용하였다.

  • PDF

Synthesis of Praseodymium-Doped TiO2 Nanocatalysts by Sol-Microwave and Their Photocatalytic Activity Study

  • Huang, Fengping;Wang, Shuai;Zhang, Shuang;Fan, Yingge;Li, Chunxue;Wang, Chuang;Liu, Chun
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권8호
    • /
    • pp.2512-2518
    • /
    • 2014
  • The praseodymium-doped $TiO_2$ photocatalyst samples, which could degrade methyl orange under UV irradiation, were prepared by sol-microwave method for improving the photocatalytic activity of $TiO_2$. The resulting materials were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), Transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Raman spectra, Fourier transform infrared spectra (FTIR) and Ultraviolet-visible diffuse reflectance spectra (UV-vis DRS). It was found Pr doping retarded the growth of crystalline size and the phase transformation from anatase to rutile, and narrowed the band gap energy. Praseodymium doping brought about remarkable improvement in the photoactivity. The optimal dopant amount of Pr was 2% by molar of cement and the calcination temperature was $500^{\circ}C$ for the best photocatalytic activity. The improvement of photocatalytic activity was ascribed to the occurrence of lattice distortion and the effective containment of the recombination of the electron-hole by $Pr^{3+}$.

Electrochemical synthesis of nanosized hydroxyapatite/graphene composite powder

  • Vesna, Miskovic-Stankovic;Sanja, Erakovic;Ana, Jankovic;Maja, Vukasinovic-Sekulic;Miodrag, Mitric;Jung, Young Chan;Park, Soo Jin;Rhee, Kyong Yop
    • Carbon letters
    • /
    • 제16권4호
    • /
    • pp.233-240
    • /
    • 2015
  • Electrochemical synthesis was employed to prepare a novel hydroxyapatite/graphene (HAP/Gr) composite powder suitable for medical applications as a hard tissue implant (scaffold). The synthesis was performed in a homogeneous dispersion containing Na2H2EDTA·2H2O, NaH2PO4 and CaCl2 with a Ca/EDTA/PO43− concentration ratio of 0.25/0.25/0.15M, along with 0.01 wt% added graphene nanosheets, at a current density of 137 mA cm−2 and pH value of 9.0. The field emission scanning electron microscopy and transmission electron microscopy observations of the composite HAP/Gr powder indicated that nanosized hydroxyapatite particles were uniformly placed in the graphene overlay. Raman spectroscopy, Fourier transform infrared spectroscopy and X-ray diffraction confirmed graphene incorporation in the HAP/Gr powder. The electrochemically prepared HAP/Gr composite powder exhibited slight antibacterial effect against the growth of the bacterial strain Staphylococcus aureus.

Catalytic Growth and Properties of Carbon Nanotubes from Fe-Mo/MgO by Chemical Vapor Deposition

  • Woo, Jong-Chang;Kim, Kyoung-Tae;Kim, Gwan-Ha;Kim, Jong-Sik;Kim, Jong-Gyu;Kim, Chang-Il
    • Transactions on Electrical and Electronic Materials
    • /
    • 제8권5호
    • /
    • pp.206-210
    • /
    • 2007
  • Carbon nanotubes(CNTs) are largely synthesized on Fe catalysts by catalytic chemical vapor deposition. The various shapes and compositions of these nanostructure CNTs were obtained by controlled parameters such as the reaction temperature, gas-mixing ratio. The influence of these parameters is investigated, together with observations of the produced materials after the purification processes. A diameter of CNTs, range from 2 to 10 nm, closely correlated with the size of the catalyst particle found attached to the tube end. The yield of CNTs was estimated to be 88.5 % and the purities of CNTs thus obtained were more than 80 %. The experimental results were documented with field emission scanning electron microscopy and raman spectroscopy and transmission electron microscopy, both before and after the purification.

탄소나노튜브를 이용한 텅스텐 나노팁 전계방출기 제작 (Fabrication of a nano-sized conical-type tungsten field-emitter based on carbon nanotubes)

  • 박창균;김종필;김영광;박진석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1220-1221
    • /
    • 2008
  • Submicron-sized conical-type tungsten(W) field-emitters based on carbon nanotubes(CNTs) are fabricated with the configuration of CNTs/catalyst(Ni)/buffer(Al/Ni/TiN)/W-tip. This study focuses on elucidating how the Al/Ni/TiN stacked buffer layer affects the structural properties of CNTs and the electron-emission characteristics of CNT-emitters. Field-emission scanning electron microscopy(FESEM), high-resolution transmission electron microscopy(HRTEM), and x-ray photoelectron spectroscopy(XPS) are used to monitor the nanostructures, surface morphologies, chemical bonds of all the catalysts and CNTs grown. The crystalline structure of CNTs is also characterized by Raman spectroscopy. Furthermore, the measurement of field-emission characteristics for the field-emitters fabricated shows that the emitter using the Al/Ni/TiN stacked buffer reveals the excellent performances.

  • PDF

Direct Synthesis of Width-tailored Graphene Nanoribbon on Insulating Substrate

  • 송우석;김수연;김유석;김성환;이수일;전철호;박종윤
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.564-564
    • /
    • 2012
  • Graphene has been emerged as a fascinating material for future nanoelectronic applications due to its extraordinally electronic properties. However, their zero-bandgap semimetallic nature is a major problem for applications in high performance field-effect transistors (FETs). Graphene nanoribbons (GNRs) with narrow widths (${\geq}10nm$) exhibit semiconducting behavior, which can be used to overcome this problem. In previous reports, GNRs were produced by several approaches, such as electron beam lithography patterning, chemically derived GNRs, longitudinal unzipping of carbon nanotubes, and inorganic nanowire template. Using these methods, however, the width distribution of GNRs was a quiet broad and substantial defects were inevitably occurred. Here, we report a novel approach for fabricating width-tailored GNRs by focused ion beam-assisted chemical vapor deposition (FIB-CVD). Width-tailored phenanthrene ($C_{14}H_{10}$) templates for direct growth of GNRs were prepared on $SiO_2$/Si substrate by FIB-CVD. The GNRs on the templates were synthesized at $900-1,050^{\circ}C$ with introducing $CH_4$ $(20sccm)/H_2$ (10 sccm) mixture gas for 10-300 min. Structural characterizations of the GNRs were carried out using Raman spectroscopy, scanning electron microscopy, and atomic force microscopy.

  • PDF

AEM on Growth Mechanism of Synthesized Graphene on Ni Catalyst

  • 박민호;이재욱;배지환;송관우;김태훈;양철웅
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.579-579
    • /
    • 2012
  • Graphene has recently been a subject of much interest as a potential platform for future nanodevices such as flexible thin-film transistors, touch panels, and solar cells. And chemical vapor deposition (CVD) and related surface segregation techniques are a potentially scalable approach to synthesizing graphite films on a variety of metal substrates. The structural properties of such films have been studied by a number of methods, including Raman scattering, x-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and transmission electron microscopy (TEM). An understanding of the structural quality and thickness of the graphite films is of paramount importance both in improving growth procedures and understanding the resulting films' electronic properties. In this study, we synthesized the few-layered grapheneunder optimized condition to figure out the growth mechanism seen in CVD-grown graphenee by using various electron microscope. Especially, we observed directly film thickness, quality, nucleation site, and uniformity of grpahene by using AEM. The details will be discussed in my presentation.

  • PDF