• Title/Summary/Keyword: rainfall prediction

Search Result 574, Processing Time 0.029 seconds

An Analysis on the Propagation Prediction Model of Earth-space Communication Link using Local Data (로컬 데이터를 이용한 지구-우주 통신 링크의 전파 예측 모델 분석)

  • Lee, Hwa-Choon;Kim, Woo-Su;Choi, Tae-Il;Oh, Soon-Soo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.3
    • /
    • pp.483-488
    • /
    • 2019
  • The propagation prediction model of the earth-space communication link used as an international standard was used to calculate and analyze the total losses on the communication path. The standard definition and scope of ITU-R Rec. were analyzed for each parameter(rain, scintillation, atmospheric gas, clouds) used to calculate the total loss. The total losses were calculated using the standard model for each parameter and the statistical data provided by ITU-R, and the results were analyzed using the validation examples data. The rain losses were calculated using long-term local rainfall attenuation statistics data measured in the region, and compared with the calculation results using a rainfall map in the ITU-R Recommendation. The data of Cheollian satellites for the L-Band and Ka-Band were used to calculate the rainfall attenuation. In the range of 0.01% to 0.1%, it was found to have a greater attenuation slope when using local data than attenuation by the model of ITU-R.

Mesoscale Features and Forecasting Guidance of Heavy Rain Types over the Korean Peninsula (한반도 호우유형의 중규모 특성 및 예보 가이던스)

  • Kim, Sunyoung;Song, Hwan-Jin;Lee, Hyesook
    • Atmosphere
    • /
    • v.29 no.4
    • /
    • pp.463-480
    • /
    • 2019
  • This study classified heavy rain types from K-means clustering for the hourly relationship between rainfall intensity and cloud top height over the Korean peninsula, and then examined their statistical characteristics for the period of June~August 2013~2018. Total rainfall amount of warm-type events was 2.65 times larger than that of the cold-type, whereas the lightning frequency divided by total rainfall for the warm-type was only 46% of the cold-type. Typical cold-type cases exhibited high cloud top height around 16 km, large reflectivity in the upper layer, and frequent lightning flashes under convectively unstable condition. Phenomenally, the cold-type cases corresponded to cloud cluster or multi-cell thunderstorms. However, two warm-type cases related to Changma and typhoon were characterized by heavy rainfall due to long duration, relatively low cloud top height and upper-level reflectivity, and the absence of lightning under the convectively neutral and extremely humid conditions. This study further confirmed that the forecast skill of rainfall could be improved by applying correction factor with the overestimation for cold-type and underestimation for warm-type cases in the Local Data Assimilation and Prediction System (LDAPS) operational model (e.g., BIAS score was improved by 5%).

A Bayesian Prediction of the Generalized Pareto Model (일반화 파레토 모형에서의 베이지안 예측)

  • Huh, Pan;Sohn, Joong Kweon
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.6
    • /
    • pp.1069-1076
    • /
    • 2014
  • Rainfall weather patterns have changed due to global warming and sudden heavy rainfalls have become more frequent. Economic loss due to heavy rainfall has increased. We study the generalized Pareto distribution for modelling rainfall in Seoul based on data from 1973 to 2008. We use several priors including Jeffrey's noninformative prior and Gibbs sampling method to derive Bayesian posterior predictive distributions. The probability of heavy rainfall has increased over the last ten years based on estimated posterior predictive distribution.

Rainfall-Runoff Analysis using SURR Model in Imjin River Basin

  • Linh, Trinh Ha;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.439-439
    • /
    • 2015
  • The temporal and spatial relationship of the weather elements such as rainfall and temperature is closely linked to the streamflow simulation, especially, to the flood forecasting problems. For the study area, Imjin river basin, which has the specific characteristics in geography with river cross operation between North and South Korea, the meteorological information in the northern area is totally deficiency, lead to the inaccuracy of streamflow estimation. In the paper, this problem is solved by using the combination of global (such as soil moisture content, land use) and local hydrologic components data such as weather data (precipitation, evapotranspiration, humidity, etc.) for the model-driven runoff (surface flow, lateral flow and groundwater flow) data in each subbasin. To compute the streamflow in Imjin river basin, this study is applied the hydrologic model SURR (Sejong Univ. Rainfall-Runoff) which is the continuous rainfall-runoff model used physical foundations, originally based on Storage Function Model (SFM) to simulate the intercourse of the soil properties, weather factors and flow value. The result indicates the spatial variation in the runoff response of the different subbasins influenced by the input data. The dependancy of runoff simulation accuracy depending on the qualities of input data and model parameters is suggested in this study. The southern region with the dense of gauges and the adequate data shows the good results of the simulated discharge. Eventually, the application of SURR model in Imjin riverbasin gives the accurate consequence in simulation, and become the subsequent runoff for prediction in the future process.

  • PDF

Application of Bias-Correction and Stochastic Analogue Method (BCSA) to Statistically Downscale Daily Precipitation over South Korea (남한지역 일단위 강우량 공간상세화를 위한 BCSA 기법 적용성 검토)

  • Hwang, Syewoon;Jung, Imgook;Kim, Siho;Cho, Jaepil
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.6
    • /
    • pp.49-60
    • /
    • 2021
  • BCSA (Bias-Correction and Stochastic Analog) is a statistical downscaling technique designed to effectively correct the systematic errors of GCM (General Circulation Model) output and reproduce basic statistics and spatial variability of the observed precipitation filed. In this study, the applicability of BCSA was evaluated using the ASOS observation data over South Korea, which belongs to the monsoon climatic zone with large spatial variability of rainfall and different rainfall characteristics. The results presented the reproducibility of temporal and spatial variability of daily precipitation in various manners. As a result of comparing the spatial correlation with the observation data, it was found that the reproducibility of various climate indices including the average spatial correlation (variability) of rainfall events in South Korea was superior to the raw GCM output. In addition, the needs of future related studies to improve BCSA, such as supplementing algorithms to reduce calculation time, enhancing reproducibility of temporal rainfall patterns, and evaluating applicability to other meteorological factors, were pointed out. The results of this study can be used as the logical background for applying BCSA for reproducing spatial details of the rainfall characteristic over the Korean Peninsula.

Comparison of Sediment Disaster Risk Depending on Bedrock using LSMAP (LSMAP을 활용한 기반암별 토사재해 위험도 비교)

  • Choi, Won-il;Choi, Eun-hwa;Jeon, Seong-kon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.3
    • /
    • pp.51-62
    • /
    • 2017
  • For the purpose of the study, of the 76 areas subject to preliminary concentrated management on sediment disaster in the downtown area, 9 areas were selected as research areas. They were classified into three stratified rock areas (Gyeongsan City, Goheung-gun and Daegu Metropolitan City), three igneous rock areas (Daejeon City, Sejong Special Self-Governing City and Wonju City) and three metamorphic rock areas (Namyangju City, Uiwang City and Inje District) according to the characteristics of the bedrock in the research areas. As for the 9 areas, analyses were conducted based on tests required to calculate soil characteristics, a predictive model for root adhesive power, loading of trees and on-the-spot research. As for a rainfall scenario (rainfall intensity), the probability of rainfall was applied as offered by APEC Climate Center (APCC) in Busan. As for the prediction of landslide risks in the 9 areas, TRIGRS and LSMAP were applied. As a result of TRIGRIS prediction, the risk rate was recorded 30.45% in stratified rock areas, 41.03% in igneous rock areas and 45.04% in metamorphic rock areas on average. As a result of LSMAP prediction based on root cohesion and the weight of trees according to crown density, it turned out to a 1.34% risk rate in the stratified rock areas, 2.76% in the igneous rock areas and 1.64% in the metamorphic rock areas. Analysis through LSMAP was considered to be relatively local predictive rather than analysis using TRIGRS.

Assessment of AnnAGNPS Model in Prediction of a Rainfall-Runoff Relationship (AnnAGNPS 모형의 강우-유출해석력 평가)

  • Choi, Kyung-Sook
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.8 no.2
    • /
    • pp.125-135
    • /
    • 2005
  • Generation and transport of nonpoint source pollution, especially sediment-associated pollutants, are profoundly influenced by hydrologic features of runoff. In order to identify pollutant export rates, hence, clear knowledge of rainfall-runoff relationship is a pre-requisition. In this study, performance of AnnAGNPS model was assessed based on the ability of the model to predict rainfall-runoff relationship. Three catchments, each under different nearly single land use, were simulated. From the results, it was found that the model was likely to produce better predictions for larger catchments than smaller catchments. Because of using the daily time scale, the model could not account for short durations less than 24 hours, especially high intensity events with multiple peak flow that significantly contribute to the generation and transport of pollutants. Since CN information for regional areas has not been built up, a careful selection of CN is needed to achieve accurate prediction of runoff volume. Storm distribution also found to be considered as an important calibration parameter for the hydrologic simulation.

  • PDF

Development of a Short-term Rainfall Forecasting Model Using Weather Radar Data (기상레이더 자료를 이용한 단시간 강우예측모형 개발)

  • Kim, Gwang-Seob; Kim, Jong-Pil
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.10
    • /
    • pp.1023-1034
    • /
    • 2008
  • The size and frequency of the natural disaster related to the severe storms are increased for recent decades in all over the globe. The damage from natural disasters such as typhoon, storm and local severe rainfall is very serious in Korea since they are concentrated on summer season. These phenomena will be more frequent in the future because of the impact of climate change related to increment of $CO_2$ concentration and the global warming. To reduce the damage from severe storms, a short-range precipitation forecasting model using a weather radar was developed. The study was conducted as following four tasks: conversion three-dimensional radar data to two-dimensional CAPPI(Constant Altitude Plan Position Indicator) efficiently, prediction of motion direction and velocity of a weather system, estimation of two-dimensional rainfall using operational calibration. Results demonstrated that two-dimensional estimation using weather radar is useful to analyze the spatial characteristics of local storms. If the precipitation forecasting system is linked to the flood prediction system, it should contribute the flood management and the mitigation of flood damages.

Summer Precipitation Forecast Using Satellite Data and Numerical Weather Forecast Model Data (광역 위성 영상과 수치예보자료를 이용한 여름철 강수량 예측)

  • Kim, Gwang-Seob;Cho, So-Hyun
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.7
    • /
    • pp.631-641
    • /
    • 2012
  • In this study, satellite data (MTSAT-1R), a numerical weather prediction model, RDAPS (Regional Data Assimilation and Prediction System) output, ground weather station data, and artificial neural networks were used to improve the accuracy of summer rainfall forecasts. The developed model was applied to the Seoul station to forecast the rainfall at 3, 6, 9, and 12-hour lead times. Also to reflect the different weather conditions during the summer season which is related to the frontal precipitation and the cyclonic precipitation such as Jangma and Typhoon, the neural network models were formed for two different periods of June-July and August-September respectively. The rainfall forecast model was trained during the summer season of 2006 and 2008 and was verified for that of 2009 based on the data availability. The results demonstrated that the model allows us to get the improved rainfall forecasts until lead time of 6 hour, but there is still a large room to improve the rainfall forecast skill.

Development of artificial intelligence-based river flood level prediction model capable of independent self-warning (독립적 자체경보가 가능한 인공지능기반 하천홍수위예측 모형개발)

  • Kim, Sooyoung;Kim, Hyung-Jun;Yoon, Kwang Seok
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.12
    • /
    • pp.1285-1294
    • /
    • 2021
  • In recent years, as rainfall is concentrated and rainfall intensity increases worldwide due to climate change, the scale of flood damage is increasing. Rainfall of a previously unobserved magnitude falls, and the rainy season lasts for a long time on record. In particular, these damages are concentrated in ASEAN countries, and at least 20 million people among ASEAN countries are affected by frequent flooding due to recent sea level rise, typhoons and torrential rain. Korea supports the domestic flood warning system to ASEAN countries through various ODA projects, but the communication network is unstable, so there is a limit to the central control method alone. Therefore, in this study, an artificial intelligence-based flood prediction model was developed to develop an observation station that can observe water level and rainfall, and even predict and warn floods at once at one observation station. Training, validation and testing were carried out for 0.5, 1, 2, 3, and 6 hours of lead time using the rainfall and water level observation data in 10-minute units from 2009 to 2020 at Junjukbi-bridge station of Seolma stream. LSTM was applied to artificial intelligence algorithm. As a result of the study, it showed excellent results in model fit and error for all lead time. In the case of a short arrival time due to a small watershed and a large watershed slope such as Seolma stream, a lead time of 1 hour will show very good prediction results. In addition, it is expected that a longer lead time is possible depending on the size and slope of the watershed.