• 제목/요약/키워드: rainfall loss

검색결과 357건 처리시간 0.027초

토양유실에 미치는 각지방별 강우 에너지 분석 (A Study On Point Storm Energy Influencing to the Soil Erosion)

  • 박성우
    • 물과 미래
    • /
    • 제9권1호
    • /
    • pp.47-54
    • /
    • 1976
  • The research are intend to establish the design criteria for slopy upland reclamation, with protecting the loss of top-soil, Recently undertaken reclamation works for developing the slopy upland of 310,000 ha. have faced to the vagueness of their deign criteria. One of the most influencing factors to cause the soil erosion depends basically upon the kinematic energy of rainfall, which is developed by the rainfall intensity. Their relationship between the rainfall and its kinematic energy is expressed as EK=916+ 331 log I. Consequently, the study was carried out through analyzing each intensity of the independant rainfall through out the 14 rainfall stations. About 10,000 single storms self recording chart of more than 10mm of rainfall amout were collected and analyzed by computer. The results of research show their kinematic energy for the 14 stations, and will be available for the establishment of the design oriteria.

  • PDF

A SYSTEM DEVELOPMENT FOR ESTIMATING NON-POINT SOURCES POLLUTANT LOADS FROM WATERSHEDS USING GIS

  • Shim, Soon-Bo;Kim, Joo-Hun;Koh, Deuk-Koo
    • Water Engineering Research
    • /
    • 제1권3호
    • /
    • pp.223-231
    • /
    • 2000
  • The purpose of this study is the development of a system for estimating non-point sources pollutant loads from a watershed, which enables users to get insights of pollutant load distribution in the watershed during rain as well. Based on the Geographic Information System, this non-point source pollutant loading estimation system(NSPLES) consists of three distinct models such as a distributed rainfall-runoff model, a soil loss and delivery model, and a non-point source pollutant model. It also includes GIS modules for preprocessing the input data for the models and graphical postprocessing of the model outputs. The system output aren't only the hydrograph, sedimentograph, and pollutograph at the watershed outlet, but also various maps that show the distribution of soil loss over the watershed. The developed system was applied to the two upper stream areas of Sumjin river basin, Ssangchi and Gwanchon basins, and three rainfall events for respective subbasins during 1992 and 1998 were selected for the system application. The results of this showed relatively higher corelation between observed data and simulated data, and proved the applicability of the system.

  • PDF

산림유역의 토양유실량(土壤流失量) 예측을 위한 지리정보(地理情報)시스템의 범용토양유실식(汎用土壤流失式)(USLE)에의 적용 (Application of GIS to the Universal Soil Loss Equation for Quantifying Rainfall Erosion in Forest Watersheds)

  • 이규성
    • 한국산림과학회지
    • /
    • 제83권3호
    • /
    • pp.322-330
    • /
    • 1994
  • 토양침식에 영향을 미치는 강우, 토양, 지형, 식생 등을 종합적으로 고려하여 단위면적당 토양유실량(土壤流失量)을 예측하는 범용토양유실식(汎用土壤流失式)(Universal Soil Loss Equation)을 지리정보(地理情報)시스템(GIS)에 접목시켰다. 경기도 광릉 임업연구원 시험림을 연구지역으로 선정하여 이곳에서 지난 12년 동안 측정된 시간별 강우자료를 이용하여 강우인자(强雨因子)(R) 값을 산출하였고, 토양도, 지형도, 위성자료 등을 이용하여 USLE 계산에 필요한 다른 인자들의 값을 $25{\times}25m^2$의 격자마다 입력하여 디지털공간정보 데이터베이스를 구축하였다. 각 격자단위로 USLE에 의하여 토양유실량이 계산된 후 그 결과를 종합하여 토양유실의 정도를 공간적으로 살펴볼 수 있는 디지털지도가 산출되었다. GIS에 의한 USLE의 적용은 일정한 테두리 안의 산림유역(山林流域)에서 발생되는 강우에 의한 토양유실량을 추정할 수 있을 뿐만아니라, 주변지역과 비교하여 토양유실의 위험이 높은 특정지점을 공간적으로 파악할 수 있다는 장점이 있다. 이러한 접근 방법은 임지전용(林地轉用), 임도(林道)개설, 벌채, 산불 및 병충해에 의한 임지의 변화가 토양침식에 미치는 영향을 효과적으로 분석할 수 있는 도구로 사용될 수 있을 것이다.

  • PDF

유기퇴비를 이용한 급경사 농경지 토양유실 저감 (Reduction of Soil Loss from Sloped Agricultural Field by using Organic Compost)

  • 고일하;강희천;권요셉;유찬;정문호;지원현
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제25권4호
    • /
    • pp.48-57
    • /
    • 2020
  • The objective of this study was to investigate the feasibility of organic compost for reducing soil loss in 25% sloped farm land. For the study, laboratory and field experiment were performed. After nine weeks monitoring in pot test, hardness of the amended soil with organic compost (1%~3%, w/w) showed two times higher than the control soil. Furthermore, soil loss of that was decreased by 95% under rainfall simulation test. From the result of laboratory experiment, organic compost with 2% (w/w) was applied for field experimental plot. After six month from April to September, the amount of soil loss became 67% of the initial, and the growth of natural vegetation was not hampered. Therefore, organic compost can be used as amendment materials to reduce soil loss in sloped farmland.

경천가뭄지역 농업용수 공급량의 수로손실 분석 (Analysis of Channel Water Loss of the Agricultural Water Supply in a Gyeongcheon Drought Area)

  • 조건호;문진경;최경숙
    • 한국농공학회논문집
    • /
    • 제62권2호
    • /
    • pp.53-62
    • /
    • 2020
  • The purpose of this study is to estimate the channel water loss of agricultural water supply in the command areas belong to Yechon irrigation channel of Gyeongcheon reservoir located Mungyeong-si, which area experienced a severe drought in 2015. The channel water loss was estimated by comparison of the irrigation water requirements (IWR) and agricultural water supply of the field data from 2012 to 2015. Further analysis was conducted to define the conveyance loss estimated based on the leakage holes and illegal pumping spots investigated through the field survey, and the distribution loss obtained by subtracting conveyance loss from the channel water loss. The annual rainfall decreased gradually, but the contribution of effective rainfall, available rain water to crop, increased to IWR during the study period. These phenomena resulted in the increase of agricultural water supply, and hence made greater the channel water loss simultaneously. The average channel water losses estimated as 36.8 % with 7.1 % of the conveyance loss and 29.7 % of distribution loss respectively. The distribution loss seems to be related to total number of rainy days, and irrigation schedules, while the conveyance loss was caused by irrigation channel aging conditions and illegal intake problems. In order to achieve sustainable agricultural water resources, the channel water loss needs to be reduced through the restoration of aged irrigation facilities and effective water managements in the fields.

인공강우실험에 의한 활엽수 부후낙엽층의 강우차단손실량 추정 (Estimating Rainfall Interception Loss of Decomposed Floor in a Deciduous Forest Using Rainfall Simulation Experiments)

  • 안병규;최형태;이기문;임상준
    • 한국농림기상학회지
    • /
    • 제16권3호
    • /
    • pp.181-187
    • /
    • 2014
  • 부후균에 의해 낙엽이 잘 분해되어 있는 부후낙엽층은 수목의 생장에 필요한 양분과 토양미생물의 활동에 필요한 에너지를 공급하고 강우를 차단하여 저류한다. 이 연구에서는 인공강우실험을 통해 부후낙엽층의 강우차단 및 저류기능을 평가하였다. 부후균을 활엽수 낙엽 시료에 인공배양하여 부후균의 균사를 발달시켜 실험에 이용하였다. 강우를 중단한 직후에 측정한 활엽수 부후낙엽의 최대 강우차단 손실량은 단위면적당 $4.22mm{\cdot}kg^{-1}{\cdot}m^2$로 조사되었으며, 강우를 중단하고 자연배수를 완료한 후에 측정한 최소 강우차단 손실량은 $1.62mm{\cdot}kg^{-1}{\cdot}m^2$에서 $2.41mm{\cdot}kg^{-1}{\cdot}m^2$의 범위를 가지며, 평균 $1.87mm{\cdot}kg^{-1}{\cdot}m^2$로 나타났다. Mann-Whitney 검정 결과, 낙엽층에 존재하는 부후균은 강우차단 및 증발 손실에 유의미한 영향을 미쳤다. 인공강우실험에 의하면 부후균은 낙엽을 분해하는 과정에서 균사를 넓게 발달시키고, 부후균의 발수기능에 의해 강우를 차단하고 일시적으로 저류하여 낙엽층에 의한 강우차단손실을 증가시키는 것으로 나타났다.

USLE모형과 시강우를 고려한 토양유실 평가 시스템을 이용한 연간 토양유실량 비교 분석 (Comparison of Annual Soil Loss using USLE and Hourly Soil Erosion Evaluation System)

  • 금동혁;류지철;강현우;장춘화;신민환;신동석;최중대;임경재
    • 한국토양비료학회지
    • /
    • 제44권6호
    • /
    • pp.991-997
    • /
    • 2011
  • Soil erosion and sediment has been known as one of pollutants causing water quality degradation in water bodies. With global warming issues worldwide, various soil erosion studies have been performed. Although on-site monitoring of sediment loss would be an ideal method to evaluate soil erosion condition, modeling approaches have been utilized to estimate soil erosion and to evaluate various best management practices on soil erosion reduction. Although the USLE has been used in soil erosion estimation for the last 40 years, the USLE model has limitations in estimating event-based soil erosion reflecting rainfall intensity and rainfall duration for long-term period. Thus, the calibrated model, capable of simulating soil erosion using hourly rainfall data, was utilized in this study to evaluate the effects of rainfall amount and rainfall intensity on soil erosion. It was found that USLE soil erosion value is $3.06ton\;ha^{-1}\;yr^{-1}$, while soil erosion values from 2006~2010 were $2.469ton\;ha^{-1}\;yr^{-1}$, $0.882ton\;ha^{-1}\;yr^{-1}$, $1.489ton\;ha^{-1}\;yr^{-1}$, $2.158ton\;ha^{-1}\;yr^{-1}$, $1.602ton\;ha^{-1}\;yr^{-1}$, respectively. Especially, soil erosion from single storm event for 2008-2010 would be responsible for 30% or more of annual soil loss. As shown in this study, hourly soil erosion estimation system would provide more detailed output from the study area. In addition, the effects of rainfall intensity on soil erosion could be evaluated with this system.

황구지천 수직교 지점에서의 최적 단위도 및 침투율의 결정 (Determination of Optimal Unit Hydrographs and Infiltration Rate Functions at the site of the Su-Jik Bridge in the HwangGuJichen River)

  • 안태진;조병돈;류희정
    • 한국습지학회지
    • /
    • 제7권3호
    • /
    • pp.57-66
    • /
    • 2005
  • 본 연구는 최적화모형을 이용하여 관측된 단일 강우-유출 사상으로부터 최적단위도와 침투율 공식의 매개변수를 결정하였다. 단일 강우-유출사상으로부터 절대오차누계를 최소로 하는 선형계획모형을 정립하고, 황구지천 수직교 지점에서의 최적침투율과 단위도를 결정하였다. 침투율 공식의 섭동 단계에서는 시산법을 적용하여 Kostiakov, Philip, Horton 및 Green-Ampt 공식의 매개변수를 결정하였다. ${\Phi}$지표법에 의한 단위도 종거의 값은 유일하게 결정되지만 침투율 공식의 매개변수에 따라 단위도의 종거는 변한다. 본 연구에서는 관측된 단일 강우-유출사상에 관하여 제안된 모형을 적용하였으며 종래의 방법에 의한 오차보다 작은 단위도를 구할 수 있었다.

  • PDF

Numerical modeling on the stability of slope with foundation during rainfall

  • Tran, An T.P.;Kim, Ah-Ram;Cho, Gye-Chun
    • Geomechanics and Engineering
    • /
    • 제17권1호
    • /
    • pp.109-118
    • /
    • 2019
  • The movement of soil along a slope during rainfall can cause serious economic damage and can jeopardize human life. Accordingly, predicting slope stability during rainfall is a major issue in geotechnical engineering. Due to rainwater penetrating the soil, the negative pore water pressure will decrease, in turn causing a loss of shear strength in the soil and ultimately slope failure. More seriously, many constructions such as houses and transmission towers built in/on slopes are at risk when the slopes fail. In this study, the numerical simulation using 2D finite difference program, which can solve a fully coupled hydromechanical problems, was used to evaluate the effects of soil properties, rainfall conditions, and the location of a foundation on the slope instability and slope failure mechanisms during rainfall. A slope with a transmission tower located in Namyangju, South Korea was analyzed in this study. The results showed that the correlation between permeability and rainfall intensity had an important role in changing the pore water pressure via controlling the infiltrated rainwater. The foundation of the transmission tower was stable during rainfall because the slope failure was estimated to occur at the toe of the slope, and did not go through the foundation.

빗물이용의 수문학적 평가: 1. 수문해석 (Hydrological Evaluation of Rainwater Harvesting: 1. Hydrological Analysis)

  • 유철상;김경준;윤주환
    • 한국물환경학회지
    • /
    • 제24권2호
    • /
    • pp.221-229
    • /
    • 2008
  • This study revised a model for hydrologically analyzing rainwater harvesting facilities considering their rainfall-runoff properties and the data available. This model has only a few parameters, which can be estimated with rather poor measurements available. The model has a non-linear module for rainfall loss, and the remaining rainfall excess (effective rainfall) is assumed to be inflow to the storage tank. This model has been applied for the rainwater harvesting facilities in Seoul National University, Korea Institute of Construction Technology, and the Daejon World Cup Stadium. As a result, the runoff coefficients estimated were about 0.9 for the building roof as a rainwater collecting surface and about 0.18 for the playground. This result is coincident with that for designing the rainwater harvesting facilities to show the accuracy of model and the simulation results.