• Title/Summary/Keyword: rainfall evolution

Search Result 37, Processing Time 0.025 seconds

Experimental Study on Capacity Variation of Paving Materials with TiO2 in Wet Condition (광촉매 이산화티타늄(TiO2)을 혼합한 도로 포장재의 습윤 조건에서의 성능 변화에 관한 실험적 연구)

  • Seo, Dawa;Yun, Tae Sup
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.5
    • /
    • pp.49-55
    • /
    • 2016
  • This study aims to present the practical Nitrogen monoxide (NO) removal capacity of cement mortar with Titanium dioxide ($TiO_2$) which is one of the paving materials by considering the environment of pavement in urban areas. NO removal capacity test under designated conditions of humidity of inflow gas and the test with variation of the degree of saturation of specimen were conducted. In the test for humidity, dry specimen is subject to the test and NO removal ratio was observed. Humidity-NO removal ratio curve is a log normal distribution in shape, and the maximum NO removal ratio appears at specific humidity. NO removal capacity test relying on the degree of saturation was carried out with wet specimen to reflect the unsaturated pavement by rainfall and domestic sewage. Wet specimen presents less NO removal capacity than dry specimen and the recovering evolution of NO removal capacity follows evaporation. Moreover, $TiO_2$ under the specific depth of specimen hardly contributes to NO removal capacity.

Development of flash flood forecasting model using method (Nesting 기법을 이용한 돌발홍수 예측모형 개발)

  • Ji, Hee-Sook;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.403-403
    • /
    • 2012
  • 최근 단시간 동안에 특정지역에 집중되는 국지적 호우에 의한 돌발홍수가 빈번히 발생하고 있으며, 이에 따른 위험과 손실이 증가하고 있는 추세이다. 현재 국내에서는 이러한 피해를 최소화하고자 돌발홍수 예측모형을 개발하고 예 경보 시스템을 구축하여 다양한 비구조적 대책을 마련하고 있다. 그러나 활용되는 예측모형의 경우 개념적 유출량인 한계유출량으로부터 돌발홍수능(Flash Flood Guidance, FFG)을 결정하여 예측 강우와 상대적인 대소 비교를 통해 돌발홍수의 발생가능성 유무를 판단하게 되는데, 문제는 산정되는 한계유출량은 개념적이기 때문에 검증이 어렵고 산정방법도 다양하여 불확실성이 높다는 단점이 있다. 이에 본 연구에서는 기존의 돌발홍수 예측 방법이 아닌, 수문모형 Nesting 기법을 이용한 돌발 홍수 예측 방법을 개발하였다. 저해상도의 대유역 기반의 유출량이 큰 영역의 경계값이 되고, 대유역을 이루고 있는 소유역을 고해상도의 작은 영역이라 할 때, 경계값인 대유역의 기반의 유출량을 참고 유출량으로 하여 소유역의 유출을 물리적 혹은 개념적으로 보다 타당하게 모의하는 방법이 수문모형 Nesting 기법이다. 이러한 기법에 필요한 강우-유출 모형으로는 대유역의 경우, SURR 모형(Sejong University Rainfall-Runoff model)을 선택하였으며, 대유역을 이루는 소유역의 유출모의는 물리적 기반의 분포형 모형인 CASC2D 모형을 이용하였다. 또한 실시간 활용을 위해서는 CASC2D 모형의 매개변수를 자동으로 추정하는 기술이 요구되며, 본 연구에서는 매개변수 전역 최적화 방법인 SCE-UA(The Shuffled Complex Evolution, University of Arizona) 기법을 활용하였다. 본 연구에서 사용한 수문모형의 적용성을 평가한 결과 대상유역에 대한 적용성이 높은 것으로 나타났으며, 연계된 두 모형의 유출거동이 유사하게 나타난 것으로 확인되었다. 본 연구에서는 Nesting 기법을 이용하여 0.5m 하천 수위의 상승 여부에 따라 돌발홍수의 발생 가능성을 예측하는 기법을 제안하였으며, 돌발홍수 사례와 일반호우사상으로부터 이 방법의 적용성을 평가하였다. 실제 돌발홍수가 발생한 유역을 선정하고 연계된 두 모형을 대상 유역에 적용한 결과 Nesting 기반의 돌발홍수 예측방법은 기존의 한계유출량 산정 방법에서 반영하지 못한 사상을 적절히 반영한 것으로 나타났다. 본 연구에서 개발한 Nesting 기법을 이용한 돌발홍수 예측모형은 일반적인 강우량 비교의 돌발홍수 예측방법에서 벗어나 새로운 돌발홍수 예측방법을 제안한 측면에서 큰 의미가 있다고 사료되며, 이러한 연구 결과는 실시간 돌발홍수 예측 시스템의 기본 모형으로 활용이 가능할 것으로 판단된다.

  • PDF

Evaluating the Spatio-temporal Drought Patterns over Bangladesh using Effective Drought Index (EDI)

  • Kamruzzaman, Md.;Hwang, Syewoon;Cho, Jaepil;Park, Chanwoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.158-158
    • /
    • 2018
  • Drought is a recurrent natural hazard in Bangladesh. It has significant impacts on agriculture, environment, and society. Well-timed information on the onset, extent, intensity, duration, and impacts of drought can mitigate the potential drought-related losses. Thus, drought characteristics need to be explained in terms of frequency, severity, and duration. This paper aims to characterize the spatial and temporal pattern of meteorological drought using EDI and illustrated drought severity over Bangladesh. Twenty-seven (27) station-based daily rainfall data for the study period of 1981-2015 were used to calculate the EDI values over Bangladesh. The evaluation of EDI is conducted for 4 sub-regions over the country to confirm the historical drought record-developed at the regional scale. The finding shows that on average, the frequency of severe to extreme drought is approximately 0.7 events per year. As a result of the regional analysis, most of the recorded historical drought events were successfully detected during the study period. Additionally, the seasonal analysis showed that the extreme droughts were frequently hit in northwestern, middle portion of the eastern and small portion of central parts of Bangladesh during the Kharif(wet) and Rabi(dry) seasons. The severe drought was affected recurrently in the central and northern regions of the country during all cropping seasons. The study also points out that the northern, south-western and central regions in Bangladesh are comparatively vulnerable to both extreme and severe drought event. The study showed that EDI would be a useful tool to identify the drought-prone area and time and potentially applicable to the climate change-induced drought evolution monitoring at regional to the national level in Bangladesh. The outcome of the present study can be used in taking anticipatory strategies to mitigate the drought damages on agricultural production as well as human sufferings in drought-prone areas of Bangladesh.

  • PDF

The Selection of Optimal Distributions for Distributed Hydrological Models using Multi-criteria Calibration Techniques (다중최적화기법을 이용한 분포형 수문모형의 최적 분포형 선택)

  • Kim, Yonsoo;Kim, Taegyun
    • Journal of Wetlands Research
    • /
    • v.22 no.1
    • /
    • pp.15-23
    • /
    • 2020
  • The purpose of this study is to investigate how the degree of distribution influences the calibration of snow and runoff in distributed hydrological models using a multi-criteria calibration method. The Hydrology Laboratory-Research Distributed Hydrologic Model (HL-RDHM) developed by NOAA-National Weather Service (NWS) is employed to estimate optimized parameter sets. We have 3 scenarios depended on the model complexity for estimating best parameter sets: Lumped, Semi-Distributed, and Fully-Distributed. For the case study, the Durango River Basin, Colorado is selected as a study basin to consider both snow and water balance components. This study basin is in the mountainous western U.S. area and consists of 108 Hydrologic Rainfall Analysis Project (HRAP) grid cells. 5 and 13 parameters of snow and water balance models are calibrated with the Multi-Objective Shuffled Complex Evolution Metropolis (MOSCEM) algorithm. Model calibration and validation are conducted on 4km HRAP grids with 5 years (2001-2005) meteorological data and observations. Through case study, we show that snow and streamflow simulations are improved with multiple criteria calibrations without considering model complexity. In particular, we confirm that semi- and fully distributed models are better performances than those of lumped model. In case of lumped model, the Root Mean Square Error (RMSE) values improve by 35% on snow average and 42% on runoff from a priori parameter set through multi-criteria calibrations. On the other hand, the RMSE values are improved by 40% and 43% for snow and runoff on semi- and fully-distributed models.

Optimization of PRISM parameters using the SCEM-UA algorithm for gridded daily time series precipitation (시계열 강수량 공간화를 위한 SCEM-UA 기반의 PRISM 매개변수 최적화)

  • Kim, Yong-Tak;Park, Moonhyung;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.10
    • /
    • pp.903-915
    • /
    • 2020
  • Long-term high-resolution hydro-meteorological data has been recognized as an essential element in establishing the water resources plan. The increasing demand for spatial precipitation in various areas such as climate, hydrology, geography, ecology, and environment is apparent. However, potential limitations of the existing area-weighted and numerical interpolation methods for interpolating precipitation in high altitude areas remains less explored. The proposed PRISM (Precipitation-Elevation Regressions on Independent Slopes Model) model can produce gridded precipitation that can adequately consider topographic characteristics (e.g., slope and altitude), which are not substantially included in the existing interpolation techniques. In this study, the PRISM model was optimized with SCEM-UA (Shuffled Complex Evolution Metropolis-University of Arizona) to produce daily gridded precipitation. As a result, the minimum impact radius was calculated 9.10 km and the maximum 34.99 km. The altitude of coastal weighted was 681.03 m, the minimum and maximum distances from coastal were 9.85 km and 38.05 km. The distance weighting factor was calculated to be about 0.87, confirming that the PRISM result was very sensitive to distance. The results showed that the proposed PRISM model could reproduce the observed statistical properties reasonably well.

On the characteristics of the 1993/1994 east Asian summer monsoon convective activities using GMS high cloud amount

  • ;;Moon, Sung-Euii;Sohn, Seoung-Hee
    • Korean Journal of Remote Sensing
    • /
    • v.11 no.3
    • /
    • pp.1-21
    • /
    • 1995
  • The characteristics of the Asian summer monsoon have been investigated for the periods of 1993/1994, the contrasting years in a view of the summer monsoon precipitation. In order to investigate the monsoon features over the eastern Asian monsoon region, the cloudiness(using the extensive data derived by the geostationary meteorological satellite), the condition of underlying surface including sea-surface temperature, and the summer rainfall are analyzed and some comparisons with 1993 and 1994 are also made and the characteristic differences are discussed. An analysis of the 2-degree latitude-longitude gridded 5-day mean high cloud amount data shows the detailed movement and persistence of the convective activities. In order to describe the spatial and temporal structures of the intraseasonal oscillation for the movement and evolution of the monsoon cloud, the extended empirical orthogonal fnction analysis with the twenty-day window size is used for the each year. Also, in order to find out the periodicity of the equatorial convective cluster, Fourier harmonic analysis is applied to the each year. The most prevailing intraseasonal oscillations of high cloud amount are 61 day mode and 15day mode in the equatorial and the subtropical oceans. However it was found that the most prevailing modes over the equatorial western Pacific and Indian Ocean were different for each year, hence raising the possibillity that the contrasting monsoon presipitation may be more fundamentally related to the interaction of intraseasonal oscillations and seasonal variation of convective activities over the lower latitude ocean.

Mineralogical Evolution of Non-Andic Soils, Jeju Island (제주도 Non-Andic 토양의 광물학적 진화)

  • 하대호;유장한;문희수;이규호;송윤구
    • Economic and Environmental Geology
    • /
    • v.35 no.6
    • /
    • pp.491-508
    • /
    • 2002
  • While about 80% of Jeju soils are classified as Andisols, the soils derived from volcanic ash in Dangsanbong are not Andisols. There is a significant difference of precipitation in localities of Jeju island. The study area is characterized by the lowest amount of annual rainfall in Jeju Island, and by the layered silicates as dominant solid phase in clay fraction. The purpose of this study was to characterize the mineralogy of the non-Andie soils in detail, especially hydroxy-interlayered silicates. Two major soil horizons are recognized in the soil profile developed in the Dangsanbong area, which can be designated as A and C. The soil pH($H_{2}0$), ranges from 6.6 to 7.3 increasing with depth, is higher than that of typical Andisols(pH<6.0). While the pH(NaF), ranges from 9.49 to 9.81, indicates that significant amount of amorphous phases might be present as exchanging complexes. It is estimated to about 1.542.88 wt% by using chemical selective dissolution. The organic content of surface horizon is about 2 wt%. This soil are composed of quartz, feldspar and olivine as major constituents with minor of silicate clays. Quartz is frequently observed in A and distinctly decreases in its amount with depth, while olivine is dominant phase in C and rarely observed in A. In the <0.2$\mu\textrm{m}$ size fraction, smectite and kaolinite/smectite interstratification are dominant with minor of illite. The amounts of smectite decrease with depth, while the amounts of kaolinite/smecite interstratification increase with depth, which indicates the trend of mineral transformation with increasing the degree of weathering. The proportion of kaolinite in kaolinite/smectite interstratification is about 85%, and is not changed significantly through the profile. In the 2-0.2$\mu\textrm{m}$size fraction, vermiculite, smectite, illite and kaolinite are major components with minor of chlorite. Most of chlorite are interstratified with smectite. Chlorite which is not interstratified with smectite occurs only in surface horizon. The proportion of the chlorite in the chlorite/smectite interstratification is 59-70(%) and increases with depth. Hydroxy-interlayered vermiculite(HIV) with hydroxy-Fe/AI in their interlayers occurs in both A and C horizon. The amounts of hydroxy-Fe/AI decrease with depth. Hydroxy-interlayered smectite(HIS) of which interlayers might be composed of hydroxy-Mg/Al occurs only in C horizon. As the results of mineralogical investigation for the soil profile in the study area, clay minerals might be changed and evolved through the following weathering sequences: 1) Smectite Kaolinite, HIS, Vermiculite, 2) Vermiculite HIV Chlorite.