• Title/Summary/Keyword: rainfall damage

Search Result 480, Processing Time 0.564 seconds

A Case Study on the Estimation of Flooded Area using GIS (GIS를 이용한 홍수피해지역 분석에 관한 사례연구)

  • Ahn, Sang-Jin;Jun, Kye-Won;Kim, Jin-Guek
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.305-308
    • /
    • 2002
  • This study is that analyzes the flood damages caused by rainfall during typhoon and how inundated area should be affected. Using HEC-HMS for analyzing rainfall-runoff and GIS (Geography Information System) for analyzing inundated area and volume. Each model was applied to Seopyung area for runoff effect analysis. As the result, Damaged area was magnified gradually according to the increase of rainfall and GIS was good for calculating the exact flood damage area at varied time.

  • PDF

A Method to Determine the Purchasing Limits of Reservior Flooding Area by Rainfall Data Hydrologric Estimation (강우기록 및 수문계획에 의한 정수지수설지의 용지 현수험 결정방법)

  • 김주영
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.11 no.3
    • /
    • pp.1742-1748
    • /
    • 1969
  • This is a method to determine the boundary line of reservoir flooding area which will be purchased. Until now, flood water level was used as the boundary line. By lowering this line from flood water level, purchasing cost of reservoir flooding area can be cut down. Sometimes, temporary flooding of arable land outside the boundary occurs. During the life of reservoir, flood damage to crop product on of this land must be indemified with net berefit from arable land between the bovndary line and normal water level. Following is the basic formula to determine the line. (Estimated flood damage to crop production of land outside the boundary line $\leqq$ Estimated net beneift from land between the boundary line and normal water level.) Minimum difference between both sides is needed to minimize the purchasing area. Flood damage and net benefit are estimated by hydrologic estimation with rainfall data and crop production estimation.

  • PDF

Mega Flood Simulation Assuming Successive Extreme Rainfall Events (연속적인 극한호우사상의 발생을 가정한 거대홍수모의)

  • Choi, Changhyun;Han, Daegun;Kim, Jungwook;Jung, Jaewon;Kim, Duckhwan;Kim, Hung Soo
    • Journal of Wetlands Research
    • /
    • v.18 no.1
    • /
    • pp.76-83
    • /
    • 2016
  • In recent, the series of extreme storm events were occurred by those continuous typhoons and the severe flood damages due to the loss of life and the destruction of property were involved. In this study, we call Mega flood for the Extreme flood occurred by these successive storm events and so we can have a hypothetical Mega flood by assuming that a extreme event can be successively occurred with a certain time interval. Inter Event Time Definition (IETD) method was used to determine the time interval between continuous events in order to simulate Mega flood. Therefore, the continuous extreme rainfall events are determined with IETD then Mega flood is simulated by the consecutive events : (1) consecutive occurrence of two historical extreme events, (2) consecutive occurrence of two design events obtained by the frequency analysis based on the historical data. We have shown that Mega floods by continuous extreme rainfall events were increased by 6-17% when we compared to typical flood by a single event. We can expect that flood damage caused by Mega flood leads to much greater than damage driven by a single rainfall event. The second increase in the flood caused by heavy rain is not much compared to the first flood caused by heavy rain. But Continuous heavy rain brings the two times of flood damage. Therefore, flood damage caused by the virtual Mega flood of is judged to be very large. Here we used the hypothetical rainfall events which can occur Mega floods and this could be used for preparing for unexpected flood disaster by simulating Mega floods defined in this study.

Analyzing the Reduction of Runoff and Flood by Arrangements of Stormwater Storage Facilities (우수저류시설의 배치방법에 따른 유출 및 침수피해 저감효과 분석)

  • Park, Changyeol;Shin, Sang Young;Son, Eun Jung
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.1
    • /
    • pp.45-54
    • /
    • 2013
  • This study analyzes the reduction effects of runoff and flood damage through different arrangements of stormwater storage facilities. Three scenarios based on the spatial allocation of storage capacity are used: concentrated, decentralized and combinative. The characteristics of runoff and flood damage by scenario are compared. The XP-SWMM model is used for runoff simulation by the probable rainfall of return period. The result shows that the concentrated arrangement of storage facilities is most effective to reduce the amount of peak flow and to delay the time of peak flow. Yet, while the concentrated arrangement is most effective to reduce the inundation damage, it is not effective to reduce runoff volume. The decentralized arrangement is most effective to reduce runoff volume. The combinative arrangement is effective not only the runoff reduction but also the reduction of flood damage. The result indicates that the flood mitigation strategies against heavy rainfall need to consider decentralized on-site arrangement for the reduction of runoff volume along with concentrated off-site arrangement of storage facilities.

Development of a method to create a matrix of heavy rain damage rating standards using rainfall and heavy rain damage data (강우량 및 호우피해 자료를 이용한 호우피해 등급기준 Matrix작성 기법 개발)

  • Jeung, Se Jin;Yoo, Jae Eun;Hur, Dasom;Jung, Seung Kwon
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.2
    • /
    • pp.115-124
    • /
    • 2023
  • Currently, as the frequency of extreme weather events increases, the scale of damage increases when extreme weather events occur. This has been providing forecast information by investing a lot of time and resources to predict rainfall from the past. However, this information is difficult for non-experts to understand, and it does not include information on how much damage occurs when extreme weather events occur. Therefore, in this study, a risk matrix based on heavy rain damage rating was presented by using the impact forecasting standard through the creation of a risk matrix presented for the first time in the UK. First, through correlation analysis between rainfall data and damage data, variables necessary for risk matrix creation are selected, and PERCENTILE (25%, 75%, 90%, 95%) and JNBC (Jenks Natural Breaks Classification) techniques suggested in previous studies are used. Therefore, a rating standard according to rainfall and damage was calculated, and two rating standards were synthesized to present one standard. As a result of the analysis, in the case of the number of households affected by the disaster, PERCENTILE showed the highest distribution than JNBC in the Yeongsan River and Seomjin River basins where the most damage occurred, and similar results were shown in the Chungcheong-do area. Looking at the results of rainfall grading, JNBC's grade was higher than PERCENTILE's, and the highest grade was shown especially in Jeolla-do and Chungcheong-do. In addition, when comparing with the current status of heavy rain warnings in the affected area, it can be confirmed that JNBC is similar. In the risk matrix results, it was confirmed that JNBC replicated better than PERCENTILE in Sejong, Daejeon, Chungnam, Chungbuk, Gwangju, Jeonnam, and Jeonbuk regions, which suffered the most damage.

Uncertainty Analysis based on LENS-GRM

  • Lee, Sang Hyup;Seong, Yeon Jeong;Park, KiDoo;Jung, Young Hun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.208-208
    • /
    • 2022
  • Recently, the frequency of abnormal weather due to complex factors such as global warming is increasing frequently. From the past rainfall patterns, it is evident that climate change is causing irregular rainfall patterns. This phenomenon causes difficulty in predicting rainfall and makes it difficult to prevent and cope with natural disasters, casuing human and property damages. Therefore, accurate rainfall estimation and rainfall occurrence time prediction could be one of the ways to prevent and mitigate damage caused by flood and drought disasters. However, rainfall prediction has a lot of uncertainty, so it is necessary to understand and reduce this uncertainty. In addition, when accurate rainfall prediction is applied to the rainfall-runoff model, the accuracy of the runoff prediction can be improved. In this regard, this study aims to increase the reliability of rainfall prediction by analyzing the uncertainty of the Korean rainfall ensemble prediction data and the outflow analysis model using the Limited Area ENsemble (LENS) and the Grid based Rainfall-runoff Model (GRM) models. First, the possibility of improving rainfall prediction ability is reviewed using the QM (Quantile Mapping) technique among the bias correction techniques. Then, the GRM parameter calibration was performed twice, and the likelihood-parameter applicability evaluation and uncertainty analysis were performed using R2, NSE, PBIAS, and Log-normal. The rainfall prediction data were applied to the rainfall-runoff model and evaluated before and after calibration. It is expected that more reliable flood prediction will be possible by reducing uncertainty in rainfall ensemble data when applying to the runoff model in selecting behavioral models for user uncertainty analysis. Also, it can be used as a basis of flood prediction research by integrating other parameters such as geological characteristics and rainfall events.

  • PDF

Assessment of weather events impacts on forage production trend of sorghum-sudangrass hybrid

  • Moonju Kim;Kyungil Sung
    • Journal of Animal Science and Technology
    • /
    • v.65 no.4
    • /
    • pp.792-803
    • /
    • 2023
  • This study aimed to assess the impact of weather events on the sorghum-sudangrass hybrid (Sorghum bicolor L.) cultivar production trend in the central inland region of Korea during the monsoon season, using time series analysis. The sorghum-sudangrass production data collected between 1988 and 2013 were compiled along with the production year's weather data. The growing degree days (GDD), accumulated rainfall, and sunshine duration were used to assess their impacts on forage production (kg/ha) trend. Conversely, GDD and accumulated rainfall had positive and negative effects on the trend of forage production, respectively. Meanwhile, weather events such as heavy rainfall and typhoon were also collected based on weather warnings as weather events in the Korean monsoon season. The impact of weather events did not affect forage production, even with the increasing frequency and intensity of heavy rainfall. Therefore, the trend of forage production for the sorghum-sudangrass hybrid was forecasted to slightly increase until 2045. The predicted forage production in 2045 will be 14,926 ± 6,657 kg/ha. It is likely that the damage by heavy rainfall and typhoons can be reduced through more frequent harvest against short-term single damage and a deeper extension of the root system against soil erosion and lodging. Therefore, in an environment that is rapidly changing due to climate change and extreme/abnormal weather, the cultivation of the sorghum-sudangrass hybrid would be advantageous in securing stable and robust forage production. Through this study, we propose the cultivation of sorghum-sudangrass hybrid as one of the alternative summer forage options to achieve stable forage production during the dynamically changing monsoon, in spite of rather lower nutrient value than that of maize (Zea mays L.).

Evaluation on the Landslide Stability Triggered by Rainfall (강우로 인한 사면활동의 안정성 평가)

  • Sagong Myung
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.1101-1106
    • /
    • 2004
  • Rainfall induced landslides are disasters causing sever damage on the human life and the infrastructures. In this paper, a simplified procedure to evaluate the slope stability problems induced by rainfall by modifying the Iverson's pressure head dispersion model. The proposed approach extends the applicability of the Iverson's model in to the cases of higher rainfall intensity than the permeability of the soil by incorporating the existence of overland flow. In addition, the Manning equation is applied to calculated the depth of overland flow. From the calculated depth of overland flow, shear stress acting on the surface is included for the driving component triggering the landslides. From the analysis of a case study, the long term rainfall alters the stability of slope.

  • PDF

Numerical modeling on the stability of slope with foundation during rainfall

  • Tran, An T.P.;Kim, Ah-Ram;Cho, Gye-Chun
    • Geomechanics and Engineering
    • /
    • v.17 no.1
    • /
    • pp.109-118
    • /
    • 2019
  • The movement of soil along a slope during rainfall can cause serious economic damage and can jeopardize human life. Accordingly, predicting slope stability during rainfall is a major issue in geotechnical engineering. Due to rainwater penetrating the soil, the negative pore water pressure will decrease, in turn causing a loss of shear strength in the soil and ultimately slope failure. More seriously, many constructions such as houses and transmission towers built in/on slopes are at risk when the slopes fail. In this study, the numerical simulation using 2D finite difference program, which can solve a fully coupled hydromechanical problems, was used to evaluate the effects of soil properties, rainfall conditions, and the location of a foundation on the slope instability and slope failure mechanisms during rainfall. A slope with a transmission tower located in Namyangju, South Korea was analyzed in this study. The results showed that the correlation between permeability and rainfall intensity had an important role in changing the pore water pressure via controlling the infiltrated rainwater. The foundation of the transmission tower was stable during rainfall because the slope failure was estimated to occur at the toe of the slope, and did not go through the foundation.

Estimation of optimal runoff hydrograph using radar rainfall ensemble and blending technique of rainfall-runoff models (레이더 강우 앙상블과 유출 블랜딩 기법을 이용한 최적 유출 수문곡선 산정)

  • Lee, Myungjin;Kang, Narae;Kim, Jongsung;Kim, Hung Soo
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.3
    • /
    • pp.221-233
    • /
    • 2018
  • Recently, the flood damage by the localized heavy rainfall and typhoon have been frequently occurred due to the climate change. Accurate rainfall forecasting and flood runoff estimates are needed to reduce such damages. However, the uncertainties are involved in guage rainfall, radar rainfall, and the estimated runoff hydrograph from rainfall-runoff models. Therefore, the purpose of this study is to identify the uncertainty of rainfall by generating a probabilistic radar rainfall ensemble and confirm the uncertainties of hydrological models through the analysis of the simulated runoffs from the models. The blending technique is used to estimate a single integrated or an optimal runoff hydrograph by the simulated runoffs from multi rainfall-runoff models. The radar ensemble is underestimated due to the influence of rainfall intensity and topography and the uncertainty of the rainfall ensemble is large. From the study, it will be helpful to estimate and predict the accurate runoff to prepare for the disaster caused by heavy rainfall.