• Title/Summary/Keyword: railroad train network

Search Result 110, Processing Time 0.034 seconds

A Study on Performance Characteristics for Auxiliary Converter of Korean High Speed Train (한국형 고속열차 보조컨버터 성능 특성에 관한 연구)

  • Han, Young-Jae
    • Proceedings of the KIEE Conference
    • /
    • 2006.10d
    • /
    • pp.247-249
    • /
    • 2006
  • As the on-board electric devices determine the performances of vehicles, production of reliable devices is important. To keep the reliability of devices constant, management of performance evaluation of the on-board devices is crucial. Because temperature bas a serious effect on failures of the components of the devices, its measurement is the first step for good management. In this study, we described performance characteristics of domestic auxiliary block developed through G7 project. We measured the performances of auxiliary block during test running by the developed on-line measurement system. After we save the input real-time data from each signal of Korean High Speed Train through the network line, we can acquire necessary information through Post-Processing program. We verify the auxiliary converter characteristics of Korean High Speed Train by this system.

  • PDF

Durability Evaluation of the Gage - Adjustable Wheelset System According to UIC Standard (UIC 기준에 따른 궤간 가변 윤축의 내구성 평가)

  • Kim, Chul-Su;Ahn, Seung-Ho;Chung, Kwang-Woo;Jang, Seung-Ho;Jang, Kook-Jin;Kim, Jung-Kyu
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.2156-2162
    • /
    • 2008
  • To reduce the cost and the time of transport in Eurasian railroad networks such as TKR, TCR and TSR owing to the problem of different track gauges (narrow/standard/broad gauge), it is important to develop the gauge - adjustable wheelset system to adapt easily to these gauges. The gauge - adjustable wheelset system in the transcontinental railway have been proposed as a more effective way in comparison with other techniques for overcoming difference in track gauges. Assume that the freight train with gauge adjustable wheelset system is running from domestic train network to TCR, TSR in Eurasian continent, it is necessary to estimate the safety of this system. This study is evaluated at examination of safety for freight train with gauge adjustable wheelset system by simulated durability analysis. Moreover, the predicted fatigue life at running track using the durability simulator was verified by the durability test according to UIC standard.

  • PDF

A Study on a Standard Strategy of EMU Control and Monitoring System for Improved Maintenance Efficiency (유지보수 효율향상을 위한 전동차 제어 및 감시시스템 표준화 방안 연구)

  • Lee, Woo-Dong;Chung, Jong-Duk
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.4
    • /
    • pp.241-245
    • /
    • 2013
  • In the case of the existing train control system, the driver monitors the condition of the vehicle through a composite controller device that displays various information on a screen in the vehicle. However, when problems arise such as car trouble, it is difficult for the drivers to take action immediately. In addition, maintenance personnel have to manually save data one by one after storing the vehicle to analyze control information of the main devices such as the brake controller and auxiliary power. To improve these points, a system that sends and receives all information in real time should be established by installing a sensor communication network and a surveillance system. This study attempts to improve the safety and maintenance of rail vehicles by suggesting a standardized method for train control and surveillance system.

Estimation of Line Utilization Rate and Track Maintenance Time of Conventional Railway (일반철도의 선로이용율과 선로 유지보수시간 추정)

  • Ki, Hyungseo;Park, Dongjoo;Kim, Dongsoo;Kim, Haengbae
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.6
    • /
    • pp.638-644
    • /
    • 2012
  • In this study, we numerically estimated available and unavailable time of conventional railway by examining 60% which is known as average range of track utilization efficiency. We also estimated track repair time for maintenance which is the main factor of making track utilization change and analyzed appropriate estimated time. The railway's safety should be guaranteed by appropriate railway operating plan and by adequate rail facilities maintenance. At the same time, daily railway train 'Dia's recovery power should be reflected to the management plan. Considering these factors, we examined mechanical equipment and the national rail network in order to rationally estimate track repair time of the maintenance and to secure spare time in case of train delays. It was found that track utilization efficiency was more or less 60%.

A Distributed Wireless Local Area Network (WLAN) Access Scheme for Efficient WLAN Communication in Busy Train Stations (혼잡 철도 역사에서 효율적인 무선랜 통신을 위한 무선랜 분산 접속 방법)

  • Koh, Seoung-Chon;Choi, Kyu-Hyoung;Kim, Ronny Yongho
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.6
    • /
    • pp.402-409
    • /
    • 2014
  • Wireless local area network (WLAN) is a widely used wireless access method due to its easy usability and excellent performance. However, its performance degrades significantly as the number of users increases. In busy train stations, where the number of WLAN users are large and, more importantly the number of simultaneous packet transmission attempts is extremely large due to the time synchronization upon train arrival, the packet transmission delay problem is very severe and almost impossible for WLAN stations to initiate communication with WLAN networks. In this paper, a novel distributed WLAN access scheme for efficient WLAN communication in busy train stations is proposed. Using the proposed scheme, WLAN access delay can be significantly reduced under highly congested traffic environments. Therefore, a significant performance enhancement for the WLAN performance used in the Communication Based Train Control (CBTC) can be achieved.

Hierarchical neural network for damage detection using modal parameters

  • Chang, Minwoo;Kim, Jae Kwan;Lee, Joonhyeok
    • Structural Engineering and Mechanics
    • /
    • v.70 no.4
    • /
    • pp.457-466
    • /
    • 2019
  • This study develops a damage detection method based on neural networks. The performance of the method is numerically and experimentally verified using a three-story shear building model. The framework is mainly composed of two hierarchical stages to identify damage location and extent using artificial neural network (ANN). The normalized damage signature index, that is a normalized ratio of the changes in the natural frequency and mode shape caused by the damage, is used to identify the damage location. The modal parameters extracted from the numerically developed structure for multiple damage scenarios are used to train the ANN. The positive alarm from the first stage of damage detection activates the second stage of ANN to assess the damage extent. The difference in mode shape vectors between the intact and damaged structures is used to determine the extent of the related damage. The entire procedure is verified using laboratory experiments. The damage is artificially modeled by replacing the column element with a narrow section, and a stochastic subspace identification method is used to identify the modal parameters. The results verify that the proposed method can accurately detect the damage location and extent.

Study on the Optimization of Hybrid Network Topology for Railway Cars (철도 차량용 하이브리드 네트워크 토폴로지 최적화 연구)

  • Kim, Jungtai;Yun, Ji-Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.4
    • /
    • pp.27-34
    • /
    • 2016
  • In the train system, railway vehicles are connected in a line. Therefore, this feature should be considered in composing network topology in a train system. Besides, inter-car communication should be distinguished from in-car communication. As for the inter-car communication, the hybrid topology was proposed to use rather than the conventional ring, star, daisy-chain, and bus topologies. In the hybrid topology, a number of cars are bound to be a group. Then star topology is used for the communication in a group and daisy-chain topology is used for the communication between groups. Hybrid topology takes the virtue of both star and daisy-chain topologies. Hence it maintains communication speed with reducing the number of connecting cables between cars. Therefore, it is important to choose the number of cars in a group to obtain higher performance. In this paper, we focus on the optimization of hybrid topology for railway cars. We first assume that the size of data and the frequency of data production for each car is identical. We also assume that the importance for the maximum number of cables to connect cars is variable as well as the importance of the communication speed. Separated weights are granted to both importance and we derive the optimum number of cars in a group for various number of cars and weights.

A study on the wire reduction design and effect analysis for the train vehicle line (철도차량 배선절감 방안 및 효과분석에 관한 연구)

  • Lee, Kangmi;Kim, Seong Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.711-717
    • /
    • 2017
  • The railway is a public transportation system that provides large-scale passenger transportation and service, whose reliability and safety is the top priority. The wiring of railway vehicles is classified into train control lines (train lines) and communication lines. The train lines are used for input / output signals related to vehicle driving and safety functions, and the communication lines are used for the input / output signals for passenger services such as broadcasting. In order to measure the reliability of railway vehicles, a train line is applied to the input / output interface of the control signals between the electric control devices in the vehicle, and there are many electromechanical devices such as relays and contactors for the control logic. In fact, since the vehicle control circuit is composed of several thousand contacts, it is difficult to check for errors such as contact failure, and it is impossible to check the real-time status, so a lot of manpower and time is required for regular maintenance. Therefore, we analyze the current state of the train line design of the electric equipment used for driving and services in domestic railway cars and propose three wiring reduction methods to improve it. Based on the analysis of domestic electric vehicles, it was confirmed that the wiring reduction effect is 35% or more.

Measurement and Analysis of Voltage Drop in Traction Power Supply System (전기철도 급전시스템의 안정화를 위한 전압강하 측정 결과 분석)

  • Kim, Joo-Rak;Lee, Young-Heum
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.2210-2211
    • /
    • 2011
  • Load capacity varies according to a day of the week in traction power supply system, because time schedule in railway is changed as demand for passengers and freights. Therefore, Voltage drop also varies as load capacity. In Korea railway, Voltage collected from catenary in train is decreased, as load supplied traction power supply system is increased. Therefore, investigation about voltage drop should be performed, before development of countermeasure against voltage drop. The investigation can be performed by simulation or field test. Naturally, field test is more precise than simulation. In addition, field test should be carried out at peak load. This paper presents test and analysis about voltage drop in railway. The test is performed in both a day of the week and weekend. The analysis is figured out comparison load capacity between two days and voltage drop across terminal.

  • PDF

A Study on the Electrical Characteristics of Track Circuits (궤도회로의 전기적 특성에 관한 연구)

  • Han, Seung-Jin;Chung, Young-Woon;Cheon, Ki-Ha;Lee, Key-Seo;Park, Young-Soo;You, Kwang-Kyun
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.635-637
    • /
    • 1996
  • Track circuit decides whether the section is occupied by train or free using the electrical characteristics of the rail, and sends information to the train using the rail as the medium of communication. So the electrical parameters of the rail are important to the track circuits. But they are influenced by the frequency of the transmitted signal and the environments like rain, snow and location of the rail. In this paper, the parameters of the rail is practically measured using the measurement method based on the 2-port network. The measurement demonstrates that the parameters of the rail is dependent on the frequency of the signal flowing on the rail and the environments like wheather. So this analysis of the parameters helps the design of track circuits.

  • PDF