• Title/Summary/Keyword: railroad track

Search Result 602, Processing Time 0.035 seconds

Evaluation of Flexural Strength of Wide Sleepers with Reinforcing Bars for Quick-Hardened Concrete Track (보강철근이 적용된 급속경화궤도용 광폭침목의 보유 휨 내력 평가)

  • Bae, Young-Hoon;Lee, Il-Wha
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.2
    • /
    • pp.702-709
    • /
    • 2018
  • A quick-hardened concrete track was developed to improve the aged ballasted track to a concrete track, and applied to earthworks and tunnels of main and urban railways. Rebars for reinforcement are not generally applied to prestressed concrete sleepers. On the other hand, many cracked sleepers have been observed in railroad sites. A wide sleeper, which is one of the main components of quick-hardened concrete track, should be structurally safe and crack-resistant in a ballasted and concrete track to avoid this problem. In particular, a wide sleeper manufactured by a post-tension method must have reinforcing bars applied to the rail-seat section. In this paper, static tests, dynamic tests, and fatigue tests were carried out to compare the flexural strength and crack resistance performance of a wide sleeper with and without reinforcing bars for a quick-hardened concrete track. As a result of the test, if some reinforcing bars are applied appropriately to the rail-seat section of a wide sleeper, it will be possible to prevent the occurrence of cracks, delay the expansion of the crack width, and the flexural fracture.

Analysis of Return Current for Rolling Stock Operation on Electrical Railroads (전기철도 구간에서의 철도차량 운행에 따른 귀선전류 분석)

  • Baek, Jong-Hyen;Kim, Yong-Kyu;Oh, Seh-Chan;Jo, Hyun-Jeong;Lee, Kang-Mi
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.9
    • /
    • pp.4112-4118
    • /
    • 2011
  • Electrical Railroads provide electric power, which can operate vehicles, via feeder wires. And the supplied current returns to the transformer substation through lines and ground net. The return current, related to signal, power and power line, and track circuit systems, is one of the most important component in the electric railway. Therefore, to prevent system faults and breakdown according to unbalance and overcurrent of the return current, various and detailed analyses for the return current are needed. In the paper, we present measurement and analysis manners in real environment and evaluate its safety. For analysis, we utilize the measured values of return currents measured in track circuits in electric railway. we expect that this research plays a key role to the related fields.

Track Deterioration Prediction and Scheduling for Preventive Maintenance of Railroad (궤도 유지보수를 위한 틀림진전 예측 및 일정최적화)

  • Kim, Dae-Young;Lee, Seong-Geun;Lee, Ki-Woo;Woo, Byoung-Koo;Lee, Sung-Uk;Kim, Ki-Dong
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1359-1370
    • /
    • 2008
  • In the track geometry such as rails, sleepers, ballasts and fastener, track deterioration occurs by repetitive train weight and the high-speed railway takes a trend faster than normal. Track deterioration of over threshold value harms ride comfort and furthermore affect in trains safety seriously. An organic and systematic track maintenance system is very important because a trend of the track deterioration effects on track life-cycle and running safety. Also costs of the railway track permanent way and its maintenance are extremely large, forming a significant part of the total infrastructure expenditure. Therefor reasonable and efficient track maintenance has to be planed on a budget. It is required to carry out not only corrective maintenance but preventive maintenance for the track maintenance. In order to perform maintenance jobs in the boundary of the machines and resources given regarding the type and amount jobs, it is necessary to determine feasible or optimal scheduling considering the priority. In this study, the system organization and required functions for the development of track maintenance system supported track deterioration prediction and optimal scheduling are proposed.

  • PDF

Loading tests and strength evaluation of bogie frame for intermodal tram (인터모달 트램 대차프레임의 하중 시험 및 강도 평가)

  • Seo, Sung-il;Mun, Hyung-Suk;Moon, Ji-Ho;Suk, Myung-Eun;Kim, Jeong-guk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.10
    • /
    • pp.554-561
    • /
    • 2016
  • In this study, loading tests and a strength evaluation of the bogie frame were conducted to verify the structural safety of the bogie system in an intermodal tram, which runs with cars on a road track. The loads were calculated taking into account the features of the road track with many sharp curves and steep gradients, which are different from the track of conventional railway. They were compared with the loads specified in the previous standard specifications. After the comparison, it was confirmed that the loads acting on the bogie system operating on a road track are slightly different from the specified loads. The specified vertical load of the standard specification for all kinds of trains is conservative, but the specified lateral and longitudinal loads are less than the calculated loads. The application of the actual loads was proven to be reasonable in the development of a new railway system. Based on the defined loads, the bogie frame was fabricated on which strain gauges were attached. It was set on the large loading frame so that the stresses could be measured when loads were applied by hydraulic actuators. After measuring the stresses, it was shown that they were below the allowable stress, which verified the structural safety of the bogie frame.

A Study for the Safety Improvement of Track using the Risk Assessment (위험도평가 적용을 통한 궤도시설 안전성 향상에 관한 연구)

  • Lee, Byung-Suk;Yang, Sin-Chu;Park, Yong-Gul
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1601-1606
    • /
    • 2011
  • The railway system consists of rolling stocks, facilities, electrical system, signaling and operation and so on, organically bound. Recently due to lots of train failures and accidents, especially the derailment related to track irregularity this year, all the people using the train are worried about railway safety and we paved the way for letting them knowing that all components of railway system are so important. As a result, most of developed countries operating railway have used to risk assessment methods about safety management to prevent railroad accidents in advance. The purpose of this paper is to find out how to closely apply to track field for risk assessment methods. Because there is no case to apply to and we're not interested in yet, despite of importance of track, in situations of higher train speed. Therefore, in this study we're going to investigate risk assessment methods and compare enire railway system with track system, eventually we want us try to present to safety management conditions necessary and secure safety improvement in track field.

  • PDF

Characteristics of Roadbed Behaviors of Concrete Track for High-Speed Railway (고속철도 콘크리트궤도용 흙노반의 거동 특성)

  • Lee Il-Wha;Lee Su-Hyung;Kang Yun-Suk
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.3 s.34
    • /
    • pp.298-304
    • /
    • 2006
  • An active application of concrete track is being expected for the future constructions of Korean railroad. For the successful concrete track construction and design in earthwork areas, the roadbed behavior should be reasonably estimated using the proper analysis method. In this paper, behaviors of concrete track on the reinforced roadbed constructed with the standard stiffness and depth were estimated thorough numerical analyses and field measurements. A three dimensional finite difference method was employed to model the concrete tracks and subground. The settlement and vertical pressures caused by train load were estimated by the numerical method and compared with the field measurement results. The bearing characteristics of roadbed were presented and the proper method for the analysis of concrete track was proposed.

Parametric Study of the Effects of Train Wind on Running Stability (열차풍 효과가 고속열차 주행안정성에 미치는 파라메타 연구)

  • Nam, Seong-Won
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2519-2523
    • /
    • 2008
  • When constructing a high-speed railroad, the reduction of the distance between track centers and the width of track bed will save the construction cost. However the shortening the distance between track centers may cause the stability problems due to higher wind pressure. Therefore the extensive technical review and aerodynamical study should be performed to determine the adequate distance between track centers. In this study, the impact that the increase in wind pressure due to the change of aerodynamic phenomena with the change of the distance between track centers may have on two trains passing by each other was predicted, and the stability of train operation was analyzed in order to review the distance between track centers suitable to Honam HSR trains. We conducted the parametric study of the effects of train wind on the running stability.

  • PDF

Long-term Settlement Prediction of Railway Concrete Track Based on Recurrent Neural Network (RNN) (순환신경망을 활용한 콘크리트궤도의 장기 침하 거동 예측)

  • Kim, Joonyoung;Lee, Su-Hyung;Choi, Yeong-Tae;Woo, Sang Inn
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.3
    • /
    • pp.5-14
    • /
    • 2020
  • The railway concrete track has been increasingly adopted for high-speed train such as KTX due to its high running stability, improved ride quality for the passengers, and low maintenance cost. However, excessive settlement of the railway concrete track has been monitored at embankment sections of the ◯◯ High-speed Line, resulting in the concerns on the safety of railway operation. In order to establish an effective maintenance plan for the concrete track railway exceeding the allowable residual settlement, it is essential to reasonably predict their long-term settlement behavior during the public period. In this study, we developed a model for predicting the long-term settlement behavior of concrete track using recurrent neural network (RNN) and examined the applicability of the developed model.

Development of Prefabricated Slab Panel for Asphalt Concrete Track (아스팔트 콘크리트 궤도용 사전제작형 슬래브 패널 개발)

  • Baek, In-Hyuk;Lee, Seong-Hyeok;Shin, Eung-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.3
    • /
    • pp.75-82
    • /
    • 2019
  • Slab panels are very important to develop asphalt concrete (AC) track for minimizing the roadbed stress due to the train load and reducing the plastic deformation of infrared-sensitive AC. In this study, the slab panel for AC track was developed through the shape design and the indoor performance test and its structural integrity has been investigated through the finite element analysis under the flexural tensile stress and the design moment according to various static load combination by KRL-2012 standard train load model and KR-C code. In order to verify the suitability of the slab panel for AC track, static bending strength test and dynamic bending strength test were performed according to EN 13230-2. Results show that the slab panel for AC track satisfies all the performance standards required by European standards such as crack loads and crack extension.

Total reference-free displacements for condition assessment of timber railroad bridges using tilt

  • Ozdagli, Ali I.;Gomez, Jose A.;Moreu, Fernando
    • Smart Structures and Systems
    • /
    • v.20 no.5
    • /
    • pp.549-562
    • /
    • 2017
  • The US railroad network carries 40% of the nation's total freight. Railroad bridges are the most critical part of the network infrastructure and, therefore, must be properly maintained for the operational safety. Railroad managers inspect bridges by measuring displacements under train crossing events to assess their structural condition and prioritize bridge management and safety decisions accordingly. The displacement of a railroad bridge under train crossings is one parameter of interest to railroad bridge owners, as it quantifies a bridge's ability to perform safely and addresses its serviceability. Railroad bridges with poor track conditions will have amplified displacements under heavy loads due to impacts between the wheels and rail joints. Under these circumstances, vehicle-track-bridge interactions could cause excessive bridge displacements, and hence, unsafe train crossings. If displacements during train crossings could be measured objectively, owners could repair or replace less safe bridges first. However, data on bridge displacements is difficult to collect in the field as a fixed point of reference is required for measurement. Accelerations can be used to estimate dynamic displacements, but to date, the pseudo-static displacements cannot be measured using reference-free sensors. This study proposes a method to estimate total transverse displacements of a railroad bridge under live train loads using acceleration and tilt data at the top of the exterior pile bent of a standard timber trestle, where train derailment due to excessive lateral movement is the main concern. Researchers used real bridge transverse displacement data under train traffic from varying bridge serviceability levels. This study explores the design of a new bridge deck-pier experimental model that simulates the vibrations of railroad bridges under traffic using a shake table for the input of train crossing data collected from the field into a laboratory model of a standard timber railroad pile bent. Reference-free sensors measured both the inclination angle and accelerations of the pile cap. Various readings are used to estimate the total displacements of the bridge using data filtering. The estimated displacements are then compared to the true responses of the model measured with displacement sensors. An average peak error of 10% and a root mean square error average of 5% resulted, concluding that this method can cost-effectively measure the total displacement of railroad bridges without a fixed reference.