• 제목/요약/키워드: raft flexibility

검색결과 6건 처리시간 0.02초

Effect of raft and pile stiffness on seismic response of soil-piled raft-structure system

  • Saha, Rajib;Dutta, Sekhar C.;Haldar, Sumanta
    • Structural Engineering and Mechanics
    • /
    • 제55권1호
    • /
    • pp.161-189
    • /
    • 2015
  • Soil-pile raft-structure interaction is recognized as a significant phenomenon which influences the seismic behaviour of structures. Soil structure interaction (SSI) has been extensively used to analyze the response of superstructure and piled raft through various modelling and analysis techniques. Major drawback of previous study is that overall interaction among entire soil-pile raft-superstructure system considering highlighting the change in design forces of various components in structure has not been explicitly addressed. A recent study addressed this issue in a broad sense, exhibiting the possibility of increase in pile shear due to SSI. However, in this context, relative stiffness of raft and that of pile with respect to soil and length of pile plays an important role in regulating this effect. In this paper, effect of relative stiffness of piled raft and soil along with other parameters is studied using a simplified model incorporating pile-soil raft and superstructure interaction in very soft, soft and moderately stiff soil. It is observed that pile head shear may significantly increase if the relative stiffness of raft and pile increases and furthermore stiffer pile group has a stronger effect. Outcome of this study may provide insight towards the rational seismic design of piles.

Simplified Analysis of Three Dimensional Mega Foundations for High-Rise Buildings

  • Jeong, Sangseom;Lee, Jaehwan;Cho, Jaeyeon
    • 국제초고층학회논문집
    • /
    • 제4권4호
    • /
    • pp.241-247
    • /
    • 2015
  • In this study, an approximate computer-based method was developed to analyze the behavior of raft and piled raft foundations. Special attention is given to the improved analytical method proposed by considering raft flexibility and soil nonlinearity. The overall objective of this study is to focus on the application of a simplified analysis method for predicting the behavior of sub-structures. Through the comparative studies, it is found that the computer programs (YS-MAT and YSPR), developed in this study, is in agreement with the general trends observed by field measurements. Therefore, YS-MAT (Yonsei-Mat) and YSPR (Yonsei Piled Raft) can be effectively used for the preliminary design of a raft or a piled raft foundation for high-rise buildings.

사질토에 근입된 말뚝지지 전면기초의 기초판 연성률에 따른 거동 분석 (Effects of Raft Flexibility on the Behavior of Piled Raft Foundations in Sandy Soil)

  • 송수민;신종영;정상섬
    • 한국지반공학회논문집
    • /
    • 제39권3호
    • /
    • pp.5-16
    • /
    • 2023
  • 본 연구는 기초판의 연성률이 말뚝지지 전면기초에 미치는 영향을 해석적 연구와 수치해석으로 분석했다. 기초판의 연성률(KR)과 선단지지 조건에 따른 말뚝과 기초판의 하중 분담률을 분석했다. 각각의 말뚝과 전체적인 응답은 3차원 유한 요소 해석법을 사용하여 분석했다. 본 연구에서 수직 하중이 증가하고 기초판의 연성률이 감소함에 따라 말뚝지지 전면기초의 하중분담비(αpr)가 감소하는 것으로 나타났다. 이러한 경향은 선단지지 말뚝을 사용하는 것보다 마찰말뚝을 사용하는 경우에 더 뚜렷하게 나타났다. 또한, 연성 기초판의 경우, 하중조건에 따른 말뚝 위치별 축력 분포경향은 큰 차이를 보이지 않았으나, 강성 기초판의 경우, 하중조건에 따라 외곽에 위치한 말뚝 두부 축력이 증가하는 경향을 보였다. 기초판의 침하는 연성 기초판 조건이 강성 기초판보다 더 크게 나타났으며, 이로 인해 연성 기초판 조건에서 하중분담비가 감소하는 것으로 나타났다.

Dynamic soil-structure interaction studies on 275m tall industrial chimney with openings

  • Jayalekshmi, B.R.;Thomas, Ansu;Shivashankar, R.
    • Earthquakes and Structures
    • /
    • 제7권2호
    • /
    • pp.233-250
    • /
    • 2014
  • In this paper, a three dimensional soil-structure interaction (SSI) is numerically simulated using finite element method in order to analyse the foundation moments in annular raft of tall slender chimney structures incorporating the effect of openings in the structure and the effect of soil flexibility, when the structure-soil system is subjected to El Centro (1940) ground motion in time domain. The transient dynamic analysis is carried out using LS-DYNA software. The linear ground response analysis program ProShake has been adopted for obtaining the ground level excitation for different soil conditions, given the rock level excitation. The radial and tangential bending moments of annular raft foundation obtained from this SSI analysis have been compared with those obtained from conventional method according to the Indian standard code of practice, IS 11089:1984. It is observed that tangential and radial moments increase with the increase in flexibility of soil. The analysis results show that the natural frequency of chimney decreases with increase in supporting soil flexibility. Structural responses increase when the openings in the structure are also considered. The purpose of this paper is to propose the need for an accurate evaluation of the soilstructure interaction forces which govern the structural response.

Soil-structure interaction effects on seismic behavior of a hyperbolic cooling tower using three-parameter Vlasov foundation model

  • Karakas, Ali I.;Ozgan, Korhan;Daloglu, Ayse T.
    • Earthquakes and Structures
    • /
    • 제14권1호
    • /
    • pp.85-94
    • /
    • 2018
  • The paper focuses on the seismic responses of a hyperbolic cooling tower resting on soil foundation represented by the three-parameter Vlasov elastic soil model. The three-parameter soil model eliminates the necessity of field testing to determine soil parameters such as reaction modulus and shear parameter. These parameters are calculated using an iterative procedure depending on the soil surface vertical deformation profile in the model. The soil and tower system are modeled in SAP2000 structural analysis program using a computing tool coded in MATLAB. The tool provides a two-way data transfer between SAP2000 and MATLAB with the help of Open Application Programming Interface (OAPI) feature of SAP2000. The response spectrum analyses of the tower system with circular V-shaped supporting columns and annular raft foundation on elastic soil are conducted thanks to the coded tool. The shell and column forces and displacements are presented for different soil conditions and fixed raft base condition to investigate the effects of soil-structure interaction. Numerical results indicate that the flexibility of soil foundation leads to an increase in displacements but a decrease in shell membrane and column forces. Therefore, it can be stated that the consideration of soil-structure interaction in the seismic response analysis of the cooling tower system provides an economical design process.

Seismic behavior of RC framed shear wall buildings as per IS 1893 and IBC provisions

  • Jayalekshmi, B.R.;Chinmayi, H.K.
    • Geomechanics and Engineering
    • /
    • 제9권1호
    • /
    • pp.39-55
    • /
    • 2015
  • Usually the analyses of structures are carried out by assuming the base of structures to be fixed. However, the soil beneath foundation alters the earthquake loading and varies the response of structure. Hence, it is not realistic to analyze structures by considering it to be fixed. The importance of soil-structure interaction was realized from the past failures of massive structures by neglecting the effect of soil in seismic analysis. The analysis of massive structures requires soil flexibility to be considered to avoid failure and ensure safety. Present study, considers the seismic behavior of multi-storey reinforced concrete narrow and wide buildings of various heights with and without shear wall supported on raft foundation incorporating the effect of soil flexibility. Analysis of the three dimensional models of six different shear wall positions founded on four different soils has been carried out using finite element software LS DYNA. The study investigates the differences in spectral acceleration coefficient (Sa/g), base shear and storey shear obtained following the seismic provisions of Indian standard code IS: 1893 (2002) (IS) and International building code IBC: 2012 (IBC). The base shear values obtained as per IBC provisions are higher than IS values.