• Title/Summary/Keyword: radon-222

Search Result 80, Processing Time 0.025 seconds

Measurement of Radon-222 Exhalation Rate from Building Materials by Using CR-39 Radon Cup (CR-39 라돈컵을 이용한 국산 전축자재의 라돈-222 방출율 측정)

  • Chang, Si-Young;Ha, Chung-Woo;Lee, Byoung-Hun
    • Journal of Radiation Protection and Research
    • /
    • v.16 no.1
    • /
    • pp.15-24
    • /
    • 1991
  • Radon-222 exhalation rate from several domestic building materials were experimentally measured by using radon cup method, in which a CR-39 plastic is used as a passive radon detector. The radon detection factor of CR-39 detector determined in a series of calibration experiments was $0.164{\pm}0.005(tracks\;cm^{-2}/Bq\;d\;m^{-3})$, which is consistent with those reported by other investigators. The radon exhalation rates of several building materials (brick, red brick, concrete block, granite plate, concrete floor and wall) ranges from $6.8{\times}10^{-6}\;(granite plate)\;to\;75.0{\times}10^{-6}Bq/m^2-sec(brick)$ with the increasing order of granite plate, red brick, concrete wall, concrete block, concrete floor and brick. It showed that the CR39 radon cup can be efficiently utilized in measuring the radon-222 gas exhalation rate from building materials.

  • PDF

Radon Concentration at N-Kindergarten in G-City (G광역시 N유치원의 라돈 농도)

  • Park, Yun;Kim, Wonjun
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.6
    • /
    • pp.421-424
    • /
    • 2015
  • In this study, To subject the constructed at N-kindergarten in G-city, the position is closed window and opened window was measured using a measuring instrument for radon. The measured results indicate that the measurement was carried out in concentrations of radon gas measured at N-kindergarten is low than United States in the radon concentration in air public 4pCi called radon gas baseline maximum allowable concentrations. As a result, radon exposure is not a problem, but when the accumulation radon gas in the lungs, get damaged same lung cancer. Be defensive of kindergarten windows open for ventilation and dust removal be possible to reduce the exposure.

Radon Removal Efficiency of Activated Carbon Filter from Coconut (코코넛 기반 활성탄 필터의 라돈 제거 효율)

  • Yun-Jin Ahn;Gi-Sub Kim;Tae-Hwan Kim;Sang-Rok Kim
    • Journal of radiological science and technology
    • /
    • v.46 no.2
    • /
    • pp.141-149
    • /
    • 2023
  • The Korea Institute of Radiological and Medical Sciences plans to produce 225Ac, a therapeutic radio-pharmaceutical for precision oncology, such as prostate cancer. Radon, a radioactive gas, is generated by radium, the target material for producing 225Ac. The radon concentration is expected to be about 2000 Bq·m-3. High-concentration radon-generating facilities must meet radioactive isotope emission standards by lowering the radon concentration. However, most existing studies concerning radon removal using activated carbon filters measured radon levels at concentrations lower than 1000 Bq·m-3. This study measured 222Rn removal of coconut-based activated carbon filter under a high radon concentration of about 2000 Bq·m-3. The 222Rn removal efficiency of activated carbon impregnated with triethylenediamine was also measured. As a result, the 222Rn removal amount of the activated carbon filter showed sufficient removal efficiency in a 222Rn concentration environment of about 2000 Bq·m-3. In addition, despite an expectation of low radon reduction efficiency of Triethylenediamine-impregnated activated carbon, it was difficult to confirm a significant difference in the results. Therefore, it is considered that activated carbon can be used as a radioisotope exhaust filter regardless of whether or not Triethylenediamine is impregnated. The results of this study are expected to be used as primary data when building an air purification system for radiation safety management in facilities with radon concentrations of about 2000 Bq·m-3.

Occurrence Characteristics of Uranium and Radon-222 in Groundwater at ○○ Village, Yongin Area (용인 ○○마을 지하수내 우라늄 및 라돈-222의 산출특성)

  • Jeong, Chan Ho;Yang, Jae Ha;Lee, Yong Cheon;Lee, Yu Jin;Cho, Hyeon Young;Kim, Moon Su;Kim, Hyun Koo;Kim, Tae Seong;Jo, Byung Uk
    • The Journal of Engineering Geology
    • /
    • v.26 no.2
    • /
    • pp.261-276
    • /
    • 2016
  • The occurrence of natural radioactive materials such as uranium and radon-222 in groundwater was examined with hydrogeochemistry and geology at ○○ village in the Yongin area. Two rounds of 19 groundwater and 5 surface water sampling were collected for analysis. The range of pH value in groundwaters was 5.81 to 7.79 and the geochemical types of the groundwater were mostly Ca(Na)-HCO3 and Ca(Na)-NO3(Cl)-HCO3. Uranium and radon-222 concentrations in the groundwater ranged from 0.06 to 411 μg/L and from 5.56 to 903 Bq/L, respectively. Two deep groundwaters used as common potable well-water sources exceeded the maximum contaminant levels of the uranium and radon-222 proposed by the United States Environmental Protection Agency (US EPA). Three groundwater samples from residential areas contained unsuitable levels of uranium, and 12 groundwater samples were unsuitable due to radon-222 concentrations. Radioactive materials in the unsuitable groundwater are naturally occurring in a Jurassic amphibole- and biotite-bearing granitic gneiss. High uranium and radon-222 groundwater concentrations were only observed in two common wells; the others showed no relationship between bedrock geology and groundwater geochemical constituents. With such high concentrations of naturally occurring radioactive materials in groundwater, the affected areas may extend tens of meters for uranium and even farther for radon-222. Therefore, we suggest the radon-222 and the uranium did not originate from the same source. Based on the distribution of radon-222 in the study area, zones of higher radon-222 concentrations may be the result of diffusion through cracks, joint, or faults. Surface radioactivity and uranium concentrations in the groundwater show a positive relationship, and the impact areas may extend for ~200m beyond the well in the case of wells containing high concentrations of uranium. The highest uranium and thorium concentrations in rock samples were detected in thorite and monazite.

Measurement and Spatial Analysis of Uranium-238 and Radon-222 of Soil in Seoul

  • Oh, Dal-Young;Shin, Kyu-Jin;Jeon, Jae-Sik
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.1
    • /
    • pp.33-40
    • /
    • 2017
  • Identification of radon in soil provides information on the areas at risk for high radon exposure. In this study, we measured uranium-238 and radon-222 concentrations in soil to assess their approximate levels in Seoul. A total of 246 soil samples were taken to analyze uranium with ICP-MS, and 120 measurements of radon in soil were conducted with an in-situ radon detector, Rad7 at a depth of 1-1.5 m. The data were statistically analyzed and mapped, layered with geological classification. The range of uranium in soil was from 0.0 to 8.5 mg/kg with a mean value of 2.2 mg/kg, and the range of radon in soil was from 1,887 to $87,320Bq/m^3$ with a mean value of $18,271Bq/m^3$. The geology had a distinctive relationship to the uranium and radon levels in soil, with the uranium and radon concentrations in soils overlying granite more than double those of soils overlying metamorphic rocks.

Occurrences of Uranium and Radon-222 from Groundwaters in Various Geological Environment in the Hoengseong Area (횡성지역 다양한 지질환경에서 지하수 중 우라늄 및 라돈-222 산출특성)

  • Jeong, Chan Ho;Yang, Jae Ha;Lee, Yu Jin;Lee, Yong Cheon;Choi, Hyeon Young;Kim, Moon Su;Kim, Hyun Koo;Kim, Tae Seong;Jo, Byung Uk
    • The Journal of Engineering Geology
    • /
    • v.25 no.4
    • /
    • pp.557-576
    • /
    • 2015
  • Groundwaters in granite, gneiss, and two-mica granite formations, including faults, in the Hoengseong area are examined to determine the relationship between their uranium and radon-222 contents and rock types. The chemical compositions of 38 groundwater samples and four surface water samples collected in the study area were analyzed. Sixteen of the samples showing high uranium and radon-222 contents were repeatedly analyzed. Surface radioactivities were measured at 30 points. The uranium and radon-222 concentrations in the groundwater samples were in the ranges of 0.02-49.3 μg/L and 20-906 Bq/L, respectively. Four samples for uranium and 35 samples for radon had concentrations exceeding the alternative maximum contaminant level of the US EPA. The chemical compositions of groundwaters indicated Ca(Na)-HCO3 and Ca(Na)-NO3(HCO3+Cl) types. The pH values ranged from 5.71 to 8.66. High uranium and radon-222 contents in the groundwaters occurred mainly at the boundary between granite and gneiss, and in the granite area. The occurrence of uranium did not show any distinct relationship to that of radon-222. The radon-222, an inert gas, appeared to be dissolved in the groundwater of the aquifer after wide diffusion along rock fractures, having been derived from the decay of uranium in underground rocks. The results in this study indicate that groundwater of neutral or weakly alkaline pH, under oxidizing conditions and with a high bicarbonate content is favorable for the dissolution of uranium and uranium complexes such as uranyl or uranyl-carbonate.

Measurement of Rn-222 Gas Concentration of Newly Constructed Apartment House in Gwangju Gwangsan-Gu (광주광역시 광산구 소재 신축 아파트 라돈가스 농도 계측)

  • Jang, Hee jun;Lee, Sang bock
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.4
    • /
    • pp.257-261
    • /
    • 2015
  • Radon is produced after the Uranium-238 and thorium-232 undergone radioactive decay process is a colorless, odorless inert gas is stored in a basement or an enclosed space. Building materials are made by a rock or soil materials. Form of radon gas is introduced into the lungs through the respiratory tract and deposited in the lungs or bronchial Daughter nuclides radon causes lung cancer. In this study, To subject the Constructed Apartment in Gwangju Gwangsan-Gu, the position is closed window and opened window was measured using a measuring instrument for radon. The measured results indicate that the measurement was carried out in concentrations of radon gas measured at Newly Constructed Apartment is low than United states in the radon concentration in air public 4 pCi called radon gas baseline maximum allowable concentrations. The exposure caused by radon concentration of new construction apartment when on the measurement results is expected to be insignificant. However, when radon gas like this is that it accumulates in the body and lungs get damaged due to exposure, such as lung cancer often open the windows to reduce the radon concentration measurements, such as in radiation protection aspects to the ventilation to reduce exposure it is considered necessary.

Background Level of Atmospheric Radon-222 Concentrations at Gosan Station, Jeju Island, Korea in 2011

  • Kim, Won-Hyung;Ko, Hee-Jung;Hu, Chul-Goo;Lee, Haeyoung;Lee, Chulkyu;Chambers, S.;Williams, A.G.;Kang, Chang-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.4
    • /
    • pp.1149-1153
    • /
    • 2014
  • Real-time monitoring of hourly atmospheric radon (Rn-222) concentration was performed throughout 2011 at Gosan station, Jeju Island, one of the least polluted regions in Korea, in order to characterize the background levels, and temporal variations on diurnal to seasonal time-scales. The annual mean radon concentration for 2011 was $2527{\pm}1356$ mBq $m^{-3}$, and the seasonal cycle was characterized by a broad winter maximum, and narrow summer minimum. Mean monthly radon concentrations, in descending order of magnitude, were Oct > Sep > Feb > Nov > Jan > Dec > Mar > Aug > Apr > Jun > May > Jul. The maximum monthly mean value (3595 mBq $m^{-3}$, October), exceeded the minimum value (1243 mBq $m^{-3}$, July), by almost a factor of three. Diurnal composite hourly concentrations increased throughout the night to reach their maximum (2956 mBq $m^{-3}$) at around 7 a.m., after which they decreased to their minimum value (2259 mBq $m^{-3}$) at around 3 p.m. Back trajectory analyses indicated that the highest radon events typically exhibited long-term continental fetch over Asia before arriving at Jeju. In contrast, low radon events were generally correlated with air mass fetch over the North Pacific Ocean. Radon concentrations typical of predominantly continental, and predominantly oceanic fetch, differed by a factor of 3.8.

The Correlation between Radon (Rn222) and Particulate Matters (PM10, PM2.5, PM1.0) in Subway Tunnel in Seoul.

  • Versoza, Michael;Park, Duckshin
    • Particle and aerosol research
    • /
    • v.13 no.2
    • /
    • pp.87-95
    • /
    • 2017
  • Radon ($Rn^{222}$) is a radioactive gas and is found at high concentrations underground. Investigations were done in many years specifically on public transportations such as in the subway stations, concourses and platforms for these are located underground areas. This study correlates the $Rn^{222}$ concentrations with the Particulate Matter (PM) concentration for the gas could be attached or trapped inside these particles. It was done on the opening subway tunnel of Miasageori Station going to Mia Station (Line 4) last August 2016. Based on the result, the $Rn^{222}$ were more influenced on the mass ratio (%) of PM present in the air instead of its mass concentration (${\mu}g/m^3$). As the $PM_{10}$ mass ratio increases ($42.32{\pm}1.03%$) during morning rush-hours, radon starts to increase up to $0.97{\pm}0.03pCi/L$. But during the afternoon $Rn^{222}$ concentrations decreased while the composition were stable at $22.96{\pm}3.0%$, $39.04{\pm}0.6%$ and $38.01{\pm}0.3%$ in $PM_1$, $PM_{2.5}$ and $PM_{10}$ respectively. It was then assumed that it could be the composition of the morning hours of the station were influencing the concentration of the radon.

Analysis of radon depth profile in soil air after a rainfall by using diffusion model

  • Maeng, Seongjin;Han, Seung Yeon;Lee, Sang Hoon
    • Nuclear Engineering and Technology
    • /
    • v.51 no.8
    • /
    • pp.2013-2017
    • /
    • 2019
  • The radon concentrations in soil air were measured before and after a rainfall. 226Ra concentration, porosity, moisture content and temperature in soil were measured at Kyungpook National University in Daegu. As the results of measurement and analysis, the arithmetic mean of measured 222Rn concentration increased from 12100 ± 500 Bq/㎥ to 16200 ± 600 Bq/㎥ after the rainfall. And the measured 226Ra concentration was 61.4 ± 5.7 Bq/kg and the measured porosity was 0.5 in soil. The estimated values of 226Ra concentration and porosity using diffusion model of 222Rn in soil were 60.3 Bq/kg and 0.509, respectively. The estimated values were similar to the measured values. 222Rn concentration in soil increased with depth and moisture content. The estimations were obtained through fitting based on the diffusion model of 222Rn using the measurement values. The measured depth profiles of 222Rn were similar to the calculated depth profiles of 222Rn in soil. We hope that the results of this study will be useful for environmental radiation analysis.