• Title/Summary/Keyword: radioprotective effect

Search Result 117, Processing Time 0.024 seconds

Effect of $\beta$-carotene on DNA damage by gamma radiation in mice

  • Chun, Ki-Jung;Kim, Woo-Jung;Kim, Jin-Kyu
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.159.1-159.1
    • /
    • 2003
  • This study deals with the radiation protection effect of the pretreatment of $\beta$-carotene and combination with selenium on the DNA damage in mice after whole body ${\gamma}$-irradiation. This was obtained the radioprotective effect by evaluation of DNA damage levels in mice spleen and blood after irradiation. Six-week-old ICR male mice were administrated with $\beta$-carotene and combination with selenium orally once a day for 5 days and then irradiated with 8.0 Gy of $\gamma$-ray at a dose rate of 1.0 Gy/min. (omitted)

  • PDF

Radioprotective Effects of Aronia on Radiation Irradiated Rats (방사선에 조사된 쥐에서 아로니아의 방사선 방호효과)

  • Mun, Hwan-Sik;Lee, Jun-Haeng
    • Journal of radiological science and technology
    • /
    • v.40 no.3
    • /
    • pp.423-431
    • /
    • 2017
  • The present study was intended to orally administer aronia to rats, irradiate radiation once to the whole bodies of the rats, and conduct blood tests to observe, compare, and analyze changes in blood cells, such as leukocytes, erythrocytes, and platelets, in order to examine the radioprotective effects of aronia. As experimental animals, 15 male Sprague-Dawley (SD) rats aged six weeks weighing 200~250 g were taken and divided into the normal group (A) of five rats, the 5 Gy control group (B) of five rats, and the 5 Gy experimental group (C) of five rats. The normal group (A) was not~irradiated at all, the control group (B) was administered with general diets and irradiated, and the experimental group(C) was orally administered with 50 mg/kg/day of aronia two times per day to achieve a distilled water oral dose of 100 mg/kg/day and irradiated thereafter (5 Gy at 500 cGy/min) for 14 days. After the experiment, differences in leukocytes, erythrocytes, and platelets among the normal group (A), the control group (B), and the experimental group (C) were examined by comparing the counts of the blood cells and the results showed no statistically significant differences. However, on a detailed review, the normal group (A) showed statistically higher mean values for all of lymphocytes, hemoglobin, and mean corpuscular hemoglobin as compared to the control group (B) and the experimental group (C). Statistically significant differences in the counts of lymphocytes were shown between the normal group (A) and the control group (B), and between the normal group (A) and the experimental group (C); furthermore, statistically significant differences in mean corpuscular hemoglobin were shown between the normal group (A) and the experimental group (C). Given the results of the present study, in irradiated rats, aronia was generally considered as having no radioprotective effect on leukocyte, erythrocyte, and platelet while having statistically significant radioprotective effects on lymphocytes, hemoglobin, and mean corpuscular hemoglobin. Based on the present experiment, diverse studies should be conducted hereafter.

Radioprotective effect of naringin and naringenin against cellular damage and oxidative stress of γ-irradiated mice (감마선을 조사한 마우스의 세포 손상과 산화적 스트레스에 대한 나린진과 나린제닌의 방사선방호 효과)

  • Kang, Jung Ae;Kim, Hye Rim;Yoon, Seon Hye;Jang, Beom-Su;Choi, Dae Seong;Park, Sang Hyun
    • Korean Journal of Food Science and Technology
    • /
    • v.49 no.6
    • /
    • pp.659-667
    • /
    • 2017
  • The present study was designed to evaluate the antioxidant activity and radioprotective effects of Naringin and Naringenin in ${\gamma}$-irradiated mice. The antioxidant activity of Naringin and Naringenin was evaluated by 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and ferric reducing antioxidant power (FRAP) assays. Healthy female BALB/c mice were administered Naringin and Naringenin orally ($90{\mu}M/dose$ and $180{\mu}M/dose$) for 7 consecutive days prior to ${\gamma}$-irradiation (6 Gy). Naringenin displayed a much higher antioxidant activity in ABTS and FRAP than naringin. ${\gamma}$-irradiation resulted in cellular damage with decreased spleen and thymus indices and white blood cells (WBC) count. Additionally, ${\gamma}$-irradiation significantly increased lipid peroxidation and decreased the levels of antioxidant enzymes and glutathione (GSH) in the liver tissue. Strikingly, prior administration of Naringenin resulted in considerable prevention of these symptoms. Protection against ${\gamma}$-irradiation-induced cellular damage by Naringenin is likely due to its higher its antioxidant activity. Together, these results confirm that Naringenin is a potent antioxidant and radioprotector.

Effects of Butanol Extract and Water-Soluble Constituent of Radioprotective Ginseng Fractioil on Cell Survival (항방사선 인삼분획의 butanol 추출물과 수용성 성분이 세포 생존율에 미치는 영향)

  • 김춘미;최향옥
    • Journal of Ginseng Research
    • /
    • v.15 no.3
    • /
    • pp.167-170
    • /
    • 1991
  • Radiation protective fraction was Isolated and partially purified from Korean white ginseng. The effect of the fraction was studied on the cell survival of W-damaged CHO-Kl cells. As a result, it was found that the fraction increased the survival rate of damaged cells significantly within the dose range of which cytotoxicity did not appear This fraction was separated into two parts by adding butanol, namely the precipitated protein component and the butanol extract. Damaged cells were treated with each of these components and their survival rates were measured. The protein component demonstrated significant increase in the survival rates, while the butanol extract showed no such increment. These results suggest that the radiation protective effect of the ginseng fraction is originated from the butanol-precipitated protein component, not from the butanol-soluble compounds.

  • PDF

감마선 조사전 홍삼 추출물의 투여가 생쥐 간에서의 Superoxide dismutase의 활성과 지질 과산화에 미치는 영향

  • Park, Yeong-Sun;Kim, Dong-Yun;Jang, Jae-Cheol;Kim, Dong-Jo;Jeon, Cheol
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.5 no.1
    • /
    • pp.142-151
    • /
    • 1992
  • Radioprotective effects of a red ginseng extracts on antioxidant enzymes(Superoxide dismutase, catalase and peroxidase) activities relationship to lipid peroxidation were studied in the cytosol fraction of mice liver. The experiments were carried out on Irradiated (5.5 Gy, $^{\60}Co$) and non-irradiated ICR mice after treatment of red ginseng extracts (5.5mg/mouse ; ip), In wholebody irradiated mice, irradiation caused a decrease in the activity of all these enzymes(on Day 21) The activities of SOD, Catalase and Peroxidase of red ginseng extracts treated mice were enhanced by $35.4\%,\;20.2\%$ and $20.1\%$, compared with non-treated mice. The red ginseng extracts led to inhibited increase of malondialdehyde product by ionizing radiation. The enhanced activity of enzymes that removed free radicals generated by radiation and thereby indicate that ginseng probably plays on important role in radioprotective effect.

  • PDF

Protective Effects of Trithioformaldehyde against Radiation Damage of Mouse Jejunal Crypt Cells (TTFA의 마우스 공장 소낭선에 대한 방사선 방호작용)

  • Lee, Jong-Hwoa;Kwon, Jun-Tack;Cho, Byung-Heon
    • The Korean Journal of Pharmacology
    • /
    • v.24 no.2
    • /
    • pp.217-220
    • /
    • 1988
  • At present, the treatment of the radiation-induced diseases are only performing by the palliative treatment technique. Moreover, radioprotective drugs are a little toxic for human being and this seriously limits their application with various complication in clinical uses. Accordingly, new radioprotectors need developing. In our Lab., we synthesized trithioformaldehyde (TTFA), containing three sulfur atom, and examined the effect on mouse jejunal crypt cells after irradiation. Mice treated with TTF A (2.0 g/ kg) showed 78% survival ratio at 30 day after 800 rad irradiation. 1.0 g/kg and 2.0 g/kg of TTF A increased resistance of jejunal crypt cells to single doses of radiation by protection factors of 1.17 and 1.23, respectively.

  • PDF

Protective effect of the methanol extract of Polyopes lancifolia (Harvey) kawaguchi et wang against ionizing radiation-induced mouse gastrointestinal injury

  • Jeong, Jinwoo;Yang, Wonjun;Ahn, Meejung;Kim, Ki Cheon;Hyun, Jin Won;Kim, Sung-Ho;Moon, Changjong;Shin, Taekyun
    • Korean Journal of Veterinary Research
    • /
    • v.51 no.3
    • /
    • pp.177-183
    • /
    • 2011
  • The radioprotective efficacy of a methanol extract of the red algae Polyopes lancifolia (Harvey) kawaguchi et wang (mPL) was evaluated in mice subjected to total-body gamma irradiation. mPL protection against radiation-induced oxidative stress was examined by histological evaluation of intestinal crypt-cell survival and liver activities of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT). mPL (100 mg/kg body weight) administered intraperitoneally at 24 h and 1 h prior to irradiation protected jejunal crypt cells from radiation-induced apoptosis (p < 0.01). The pretreatment of mPL attenuated a radiation-induced decrease in villous height (p < 0.05), and improved jejunal crypt survival (p < 0.05). The dose reduction factor was 1.14 at 3.5 days after irradiation. Treatment with mPL prior to irradiation resulted in significantly higher (p < 0.01) levels of SOD and CAT activities, compared to those levels of irradiated control mice with vehicle treatment. These results suggest that mPL is a useful radioprotective agent capable of defending intestinal progenitor cells against total-body irradiation, at least in part through mPL antioxidative activity.

Effect of Ginseng on Calretinin Expression in Mouse Hippocampus Following Exposure to 835 MHz Radiofrequency

  • Aryal, Bijay;Maskey, Dhiraj;Kim, Myeung-Ju;Yang, Jae-Won;Kim, Hyung-Gun
    • Journal of Ginseng Research
    • /
    • v.35 no.2
    • /
    • pp.138-148
    • /
    • 2011
  • Exponential rise in the use of mobile communication devices has generated health concerns due to radiofrequency (RF) exposure due to its close proximity to the head. Calcium binding proteins like calretinin regulate the levels of calcium ($Ca^{2+}$) which plays an important role in biological systems. Ginseng is known for maintaining equilibrium in the human body and may play a beneficial radioprotectant role against electromagnetic field (EMF) exposure. In the present study, we evaluated the radioprotective effects of red ginseng (RG) extract in a mouse model. Calretinin (CR) expression was measured using a free-floating immunohistochemical method in the hippocampus of mice after 835 MHz EMF exposure for 5 h/d for 5 d at specific absorption rate=1.6 W/kg for the different experimental groups. The control animals were treated with NaCl while the experimental animals received 10 mg/kg ginseng, or 30 mg/kg; EMF exposed mice were also treated with NaCl, 10 mg/kg ginseng (E10), or 30 mg/kg (E30). Decreases in CR immunoreactivity (IR) along with loss of CA1 and CA3 interneurons and infragranular cells were observed in the ENaCl group while such losses were not observed in the E10 and E30 groups. CR IR significantly increased in the RG-treated group compared to control and EMF-exposed groups treated with NaCl. The study demonstrates that RG extract can serve as a radioprotective agent that maintains $Ca^{2+}$ homeostasis and prevents neuronal loss in the brain hippocampal region caused by RF exposure.

Radioprotective Effects of Propolis on the Mouse Testis Exposed to X-ray. (프로폴리스가 X-선에 노출된 마우스 정소에 미치는 방사선 방어 효과)

  • Ji, Tae-Jung;Kim, Jong-Sik;Jeong, Hyung-Jin;Seo, Eul-Won
    • Journal of Life Science
    • /
    • v.17 no.5 s.85
    • /
    • pp.664-670
    • /
    • 2007
  • The propolis is natural product produced by honeybees and is known to have many biologically useful properties such as anti-microbial, anti-oxidative and anti-tumorigenic activity. However, its radio-protective property has not been well studied. To investigate radio-protective effect of propolis on mouse testis, mice were supplemented with propolis after 5 Gy irradiation. The histological changes of testis were detected by TEM. The results indicate that propolis may protect tissue deformation which is induced by 5 Gy of ionizing radiation. Furthermore, to elucidate the potential molecular mechanisms involved in radio-protective property of propolis, we performed microarray experiments using oligo DNA microarray. We found 65 up-regulated genes and 224 down-regulated genes, whose expression levels were affected more than 2-fold by propolis treatment in mice irradiated at 5 Gy. We confirmed microarray data with reverse transcription-PCR using gene specific primers. The results of RT-PCR are highly correlated with those of microarray. These results may help understanding molecular mechanisms of radioprotective effects by propolis in mouse model.

Radiation Protection Effect of Selenium on the Rat's Prostate (흰쥐의 전립선에 대한 셀레늄(Se)의 방사선 방호효과)

  • Choi, Hyung-Seok;Choi, Jun-Hyeok;Jung, Do-Young;Kim, Jang-Oh;Shin, Ji-Hye;Kim, Joo-Hee;Min, Byung-In
    • Journal of radiological science and technology
    • /
    • v.40 no.2
    • /
    • pp.317-322
    • /
    • 2017
  • High-tech medical equipment has increased the utilization of radiation in the medical field. As a result, research on radiation protection using natural materials has become an important social issue. Selenium is a natural substance that is highly expressed in prostate known that an essential role in prostate cells. Selenium was orally administered to Rat and irradiated with 10 Gy of radiation. Then, the prostate tissue w as used as a target organ for 1 day, 7 days and 21 days to investigate the radiation protection effect of selenium through changes of blood components, Superoxide Dismutase and histological changes. As a result, there was a significant protective effect of hematopoietic immune system(hemoglobin concentration, neutrophil, platelet) in the group irradiated with selenium(p<0.05). the observation of tissue changes selenium is an effective component to increase Superoxide Dismutase activity, and it was confirmed that it has an effect of inhibiting the expression of hypertrophy of prostate by irradiation. Therefore, it is considered that selenium can be utilized as a radioprotective agent by inducing prevention of prostate-related diseases.