• 제목/요약/키워드: radiometric characteristics

검색결과 72건 처리시간 0.017초

심층신경망과 천리안위성 2A호를 활용한 지상기온 추정에 관한 연구 (Estimation for Ground Air Temperature Using GEO-KOMPSAT-2A and Deep Neural Network)

  • 엄태윤;김광년;조용한;송근용;이윤정;이윤곤
    • 대한원격탐사학회지
    • /
    • 제39권2호
    • /
    • pp.207-221
    • /
    • 2023
  • 본 연구는 천리안위성 2A호의 Level 1B (L1B) 정보를 사용해 지상기온을 추정하기 위한 심층신경망(deep neural network, DNN) 기법을 적용하고 검증을 실시하였다. 지상기온은 지면으로부터 1.5 m 높이의 대기온도로 일상생활뿐만 아니라 폭염이나 한파와 같은 이슈에 밀접한 관련을 갖는다. 지상기온은 지표면 온도와 대기의 열 교환에 의해 결정되므로 위성으로부터 산출된 지표면 온도(land surface temperature, LST)를 이용한 지상기온 추정 연구가 활발하였다. 하지만 천리안위성 2A호 산출물 LST는 Level 2 정보로 구름영향이 없는 픽셀만 산출되는 한계가 있다. 따라서 본 연구에서는 Advanced Meteorological Imager 센서에서 측정된 원시데이터에 오직 복사와 위치보정을 마친 L1B 정보를 사용해 지상기온을 추정하기 위한 DNN 모델을 제시하고 그 성능을 가늠하기 위해 위성 LST와 지상관측 기온 사이의 선형회귀모델을 기준모델로 사용하였다. 연구기간은 2020년부터 2022년까지 3년으로 평가기간 2022년을 제외한 기간은 훈련기간으로 설정했다. 평가지표는 기상청의 종관기상관측소에서 정시에 관측된 기온정보로 평균 제곱근 오차를 사용하였다. 관측지점에서 추출된 픽셀 중 손실된 픽셀의 비율은 LST는 57.91%, L1B는 1.63%를 보였으며 LST의 비율이 낮은 이유는 구름의 영향 때문이다. 제안한 DNN의 구조는 16개 L1B 자료와 태양정보를 입력 받는 층과 은닉층 4개, 지상기온 1개를 출력하는 층으로 구성하였다. 연구결과 구름의 영향이 없는 경우 DNN 모델이 root mean square error (RMSE) 2.22℃로 기준모델의 RMSE 3.55℃ 보다 낮은 오차를 보였고, 흐린 조건을 포함한 총 RMSE는 3.34℃를 나타내면서 구름의 영향을 제거할 수 있을 것으로 보였다. 하지만 계절과 시간에 따른 분석결과 여름과 겨울철에 모델의 결정계수가 각각 0.51과 0.42로 매우 낮게 나타났고 일 변동의 분산이 0.11과 0.21로 나타났다. 가시채널을 고려해 태양 위치정보를 추가한 결과에서 결정계수가 0.67과 0.61로 개선되었고 시간에 따른 일 변동의 분산도 0.03과 0.1로 감소하면서 모든 계절과 시간대에 더 일반화된 모델을 생성할 수 있었다.

초분광영상 기반 탁수 모니터링에서의 탁도-SS 관계식 적용성 검토 (Review of applicability of Turbidity-SS relationship in hyperspectral imaging-based turbid water monitoring)

  • 김종민;김광수;권시윤;김영도
    • 한국수자원학회논문집
    • /
    • 제56권12호
    • /
    • pp.919-928
    • /
    • 2023
  • 우리나라의 강우 특성은 여름철 홍수기에 집중되어있다. 특히 이상강우 및 기상이변에 의한 집중강우의 증가 추세로 다량의 탁수가 댐 내에 유입될 시 전도현상으로 인해 탁수 장기화 현상이 발생하게 된다. 이러한 문제를 해결하기 위한 탁수 예측을 통한 선제적 조치 방안 또는 댐 운영방안 마련에 많은 연구가 진행되고 있다. 탁수 예측을 위해서는 상류 유입부의 탁수 자료를 필요로 하지만 현재 시·공간적인 데이터 해상도는 부족한 실정이다. 시간적 해상도 개선을 위해서는 탁도-SS 관계식에 대한 개발을 필요로 하며 공간적 해상도 개선을 위해 다항목수질측정기(YSI), 레이저부유사측정기(Laser In-Situ Scattering and Transmissometry, LISST), 초분광 센서 등의 센서 기반 측정을 통해 선, 면 단위 데이터 측정을 통해 탁수에 대한 공간적 해상도를 개선할 수 있다. 또한 LISST-200X의 경우 입경 크기 등에 대한 자료 수집이 가능함에 따라 분율(Clay : Silt : Sand)에 대한 탁도-SS 관계식에 활용될 수 있다. 또한 최근 원격탐사 방안 중 다른 탑재체에 비해 공간해상도 및 시간해상도가 높은 UAV와 분광·방사 해상도가 높은 초분광 센서를 활용 시 탁수 발생에 대한 공간적인 분포를 제시할 수 있다. 따라서, 본 연구에서는 LISST-200X 및 YSI-EXO를 활용하여 실험실 분석을 통해 분율(Clay : Silt : Sand)에 따라 탁도-SS 관계식을 산정하였으며 UAV (Matrice 600), 초분광센서(microHSI 410 SHARK)를 포함한 센서 기반 현장 측정을 통해 탁도와 부유사 농도, 측정된 부유사농도 기반 탁도-SS 관계식을 이용하여 산정한 탁도에 대하여 공간적 분포를 제시하였다. 이를 통해 탁도-SS 관계식에 대한 적용성 검토 및 탁수 발생 현황에 대하여 파악하고자 하였다.