Periodontal defects of the furcation are characterized by several inherent anatomic factors that can make successful periodontal therapy difficult and results unpredictable. The severity and rate of occurrence of periodontal disease are directly related to the location of the furcation relative to the cementa-enamel junction and anatomical form of the root by limiting the accessibility and effectiveness of the periodontal instrumentation. This study investigated the reliability and accuracy of panoramic radiograph diagnoses of the periodontal state of mandibular molars, particularly regarding the diagnosis of furcation area periodontal defects, treatment planning, and prognosis prediction. This study examined a total of 110 teeth belonging to 33 subjects (19 male, 14 female) presenting with incipient to moderate periodontitis 4-7mmpocket depth. The alveolar bone level, length and width of the root trunk, and root separation angle were measured using the panoramic radiograph and compared to the results taken directly by retracting a full-thickness flap. The results of the study are as follows: 1. Data regarding the alveolar bone level of the mandibular first molar showed that the directly taken surgical measurements resulted in $5.1{\pm}0.9mm$ that was slightly deeper than the corresponding panoramic measurement resulted in $4.8{\pm}0.8mm$, but these differences were statistically insignificant (p>0.05). 2. The data of the directly taken surgical measurement of the mandibular second molar $(5.1{\pm}1.1mm)$ was slightly deeper than the corresponding panoramic measurement $(4.7{\pm}1.2mm)$, but these differences were statistically insignificant (p>0.05). 3. The measured values of the length and width of the mandibular first molar root trunks were determined to be $4.1{\pm}0.6mm$ and $7.3{\pm}0.9mm$, respectively, while the values of the mandibular second molar root trunks were determined to be $4.6{\pm}1.3mm$ and $7.6{\pm}0.9mm$ respectively. The differences between these values were found to be statistically significant (p<0.01). 4. The measured values of the root separation angle showed that the mandibular first molars averaged $34.5{\pm}4.4^{\circ}$, while the mandibular second molars averaged $23.0{\pm}10.0^{\circ}$. The differences between these values were found to be statistically significant (p<0.01).
Objective: The purpose of this study was to confirm the reliability of a cone beam computed tomography (CBCT)-generated panoramic view based on a CBCT 3D image and to find the most helpful 2D panoramic image compared with CBCT 3D image when examining the mesiodistal tooth axis. Methods: A test model was constructed according to cephalometric norms. The test model was repeatedly repositioned for CBCT and panoramic radiographic imaging. Panoramic radiographs were acquired at each of the following 3 occlusal plane positions: $-5^{\circ}$, $0^{\circ}$, and $+5^{\circ}$. Measurements of mesiodistal tooth axis in CBCT 3D image, CBCT-generated panoramic view, and panoramic radiographs were compared. Results: Compared with the CBCT-generated panoramic view, CBCT 3D image showed significant difference in the mesiodistal tooth axis in the premolars and no significant difference in the mesiodistal tooth axis in the incisors and canines. Mesiodistal tooth axis on the CBCT-generated panoramic view was significantly different from that on panoramic radiographs. Conclusions: CBCT-generated panoramic view can be a useful tool for evaluating mesiodistal tooth axis.
Proceedings of the Korean Society of Medical Physics Conference
/
2002.09a
/
pp.248-251
/
2002
The intensity modulated radiation therapy (IMRT) with a multileaf collimator (MLC) requires the conversion of a radiation fluence map into a leaf sequence file that controls the movement of the MLC during radiation treatment of patients. Patient dose verification is clinically one of the most important parts in the treatment delivery of the radiation therapy. The three dimensional (3D) reconstruction of dose distribution delivered to the target helps to verify patient dose and to determine the physical characteristics of beams used in IMRT. A new method is presented for the pretreatment dosimetric verification of two dimensional distributions of photon intensity by means of Beam Intensity Scanner System (BISS) as a radiation detector with a custom-made software for dose calculation of fluorescence signals from scintillator. The scintillator is used to produce fluorescence from the irradiation of 6MV photons on a Varian Clinac 21EX. The BISS reproduces 3D- relative dose distribution from the digitized fluoroscopic signals obtained by digital video camera-based scintillator(DVCS) device in the IMRT. For the intensity modulated beams (IMBs), the calculations of absorbed dose are performed in absolute beam fluence profiles which are used for calculation of the patient dose distribution. The 3D-dose profiles of the IMBs with the BISS were demonstrated by relative measurements of photon beams and shown good agreement with radiographic film. The mechanical and dosimetric properties of the collimating of dynamic and/or step MLC system alter the generated intensity. This is mostly due to leaf transmission, leaf penumbra and geometry of leaves. The variations of output according to the multileaf opening during the irradiation need to be accounted for as well. These phenomena result in a fluence distribution that can be substantially different from the initial and calculative intensity modulation and therefore, should be taken into account by the treatment planning for accurate dose calculations delivered to the target volume in IMRT.
Kim, Yun-Jeong;Park, Ji-Man;Kim, Sungtae;Koo, Ki-Tae;Seol, Yang-Jo;Lee, Yong-Moo;Rhyu, In-Chul;Ku, Young
Journal of Periodontal and Implant Science
/
v.46
no.6
/
pp.372-381
/
2016
Purpose: The aim of this study was to determine the relationship between buccal bone thickness and gingival thickness by means of a noninvasive and relatively accurate digital registration method. Methods: In 20 periodontally healthy subjects, cone-beam computed tomographic images and intraoral scanned files were obtained. Measurements of buccal bone thickness and gingival thickness at the central incisors, lateral incisors, and canines were performed at points 0-5 mm from the alveolar crest on the superimposed images. The Friedman test was used to compare buccal bone and gingival thickness for each depth between the 3 tooth types. Spearman's correlation coefficient was calculated to assess the correlation between buccal bone thickness and gingival thickness. Results: Of the central incisors, 77% of all sites had a buccal thickness of 0.5-1.0 mm, and 23% had a thickness of 1.0-1.5 mm. Of the lateral incisors, 71% of sites demonstrated a buccal bone thickness <1.0 mm, as did 63% of the canine sites. For gingival thickness, the proportion of sites <1.0 mm was 88%, 82%, and 91% for the central incisors, lateral incisors, and canines, respectively. Significant differences were observed in gingival thickness at the alveolar crest level (G0) between the central incisors and canines (P=0.032) and between the central incisors and lateral incisors (P=0.013). At 1 mm inferior to the alveolar crest, a difference was found between the central incisors and canines (P=0.025). The lateral incisors and canines showed a significant difference for buccal bone thickness 5 mm under the alveolar crest (P=0.025). Conclusions: The gingiva and buccal bone of the anterior maxillary teeth were found to be relatively thin (<1 mm) overall. A tendency was found for gingival thickness to increase and bone thickness to decrease toward the root apex. Differences were found between teeth at some positions, although the correlation between buccal bone thickness and soft tissue thickness was generally not significant.
The purpose of this study was to evaluate the clinical and microbiological outcomes following the use of 30% minocycline-loaded polycaprolacton film and 2% minocycline-loaded gel that was applied locally into pockets combined with scaling and root planing. 25 human subjects who were non-pregnant, non-lactating, aged 20-50 and diagnosed as moderate to advanced adult periodontitis were enrolled. Subjects were excluded if they had a history of severe acute or chronic systemic disease, if they required antibiotic prophylaxis for dental treatment for any reason, or if they reported a history suggestive of hypersensitivity reactions to minocycline or tetracycline. 4quadrants that had several teeth with a 5-8mm probing pocket depth and radiographic evidence of alveolar bone loss for each patient were selected and divided into test sites and control sites according to the split-mouth design. Scaling and root planing was done for each site at baseline(0week). Test sites received the minocycline gel and strip and control sites had saline irrigation. The patients received both treatments simyltaneously. Subgingival irrigation of sterile saline was applied to the control sites for approximately 30 seconds. Minocycline strip and gel was applied into the periodontal pocket at 1, 2, 3, 4 weeks each after scaling and root planing in the test sites. The clinical and microbiological measurements were made at baseline and at the follow-up visits 6, 10, 14, 20 weeks. The results of this study were as follows; 1. The sulcular bleeding index, probing pocket depth and Periocheck test was significantly reduced and the relative proportions of spirochetes and motile rods were significantly reduced and the proportion of cocci was correspondingly increased, in locally delivered minocycline strip group compared to saline irrigation group. 2. In locally delivered minocycline gel group, The effect was the same with minocycline strip group as compared with saline irrigation therapy. 3. There was no significant differences between minocycline strip group and minocycline gelgroup. In conclusion, minocycline HCl local drug delivery combined with scaling and root planing may provide added improvement of clinical and microbiological responses by inhibiting bacterial recolonization of treated sites. It is suggested that the local administration of minocycline-HCl in the periodontal pocket is effective when combined with subgingival mechanical debridement.
Seo, Hyo-Seok;Chung, Chin-Hyung;Lim, Sung-Bin;Hong, Ki-Seok
Journal of Periodontal and Implant Science
/
v.36
no.2
/
pp.461-471
/
2006
In order to achieve a satisfactory esthetic result of periodontal surgery or implant in maxillary anterior area, periodontists must be aware of normal alveolar bone anatomy. The purpose of this study was to evaluate the relationship of alveolar bone morphology to tooth shape and form. 78(mean age : 25 yrs) periodontally healthy volunteers participated in this study. Two maxillary central incisor and one lateral incisor were selected to study. With minimal local anesthesia, gutta-percha cone inserted to labial gingival sulcus of selected teeth just after bone sounding with periodontal probe. Metal ball (4mm diameter) attached to palatal fossa of central incisor. Then, periapical radiograph was taken according to long cone paralleling technique. After film scan, labial alveolar bone profile reproduced along interproximal bone and apical ends of gutta-percha cones on computer screen. By utilizing computer program, the distance from height of interproximal bone to the labial bone crest in central incisor-central incisor and central incisor-lateral incisor area was measured and converted to real distance by using vertical length of metal ball on film. After measuring crown length & width of central incisor, the 10 individuals ranked lowest GW/L ratio (crown width/length ratio) and the 10 ranked highest were selected as having a long-narrow(group N), or a short-wide(group W) form of the central incisors. Means of the distance from height of interproximal bone to the labial bone crest of group N, W were calculated and compared by means of independent t-test. The results were as follows: 1. Mean distance from the height of the interproximal bone to the labial bone crest was $3.5{\pm}0.7mm$ between two central incisor, and $2.8{\pm}0.6mm$ between central and lateral incisor. 2. Mean GW/L ratio of group N was 0.57, and group W was 0.8. Mean distance from the height of the interproximal bone to the labial bone crest of group N was higher than group W in both measured area(measurements of group N, W were $3.9{\pm0.2mm$ and $3.5{\pm}0.2mm$ between two central incisor, $3.0{\pm}0.2mm$ and $2.8{\pm}0.2mm$ between central and lateral incisor), but there were no statistically significant differences when the groups were compared. Within the limits of the present study, there was a tendency that subjects with long-narrow teeth have more scalloped alveolar bone profile than subjects with short-wide teeth in upper anterior area, but no statistically significant differences were found.
Journal of the korean academy of Pediatric Dentistry
/
v.25
no.1
/
pp.225-233
/
1998
The purpose of this study was to determine the thickness of the cortical bone at the mandibular angle in children and adolescents. The subjects were composed of 153 subjects who were 3 to 17 years of age that had not been history of bone disease or metabolic disease and no dental caries or tooth loss on mandibular molars. The subjects were divided into three age groups, group I (preschool children) was 3 to 5 years of age and grouop II (school children) was 6 to 11 years of age and group III (adolescence) was 12 to 17 years of age. Panoramic radiographs of these patients were collected and measurements of the thickness of the cortical bone were obtained at the mandibular angle. The average thickness of the cortical bone in the group I was 1.01$\pm$0.18 mm in boys and 1.07$\pm$0.22 mm in girls. In the group II was 1.23$\pm$0.18 mm in boys and 1.32$\pm$0.18 mm in girls. In the group III was 1.60$\pm$0.23 mm in boys and 1.58$\pm$0.20 mm in girls. Statistical analyses did not reveal any significant difference between the right or left side of the mandible but difference was exist between the same age groups by sex, especially in group II (p<0.01), except in group III. The greater thickness of cortical bone in the older age group was shown to be statistically significant. The correlation coefficient between age and the thickness of the cortical bone at the mandibular angle showed a high value of r=0.76.
Journal of Dental Rehabilitation and Applied Science
/
v.34
no.1
/
pp.32-38
/
2018
Purpose: The purpose of present study was to retrospectively analyze the survival rate of narrow diameter implant less than 3.6 mm by initial stability and radiographic measurements. Materials and Methods: In total, 24 patients who received 38 narrow diameter implants (${\leq}3.6mm$ in diameter, ${\geq}7mm$ in length) were enrolled in this retrospective study. The cumulative survival rate was calculated and various factors were investigated according to the implant platform diameter, body diameter, length, position, concomitant use of guided bone regeneration in implant placement and final prosthesis type. Initial stability was investigated with implant stability quotient (ISQ) value. The mesial and distal marginal bone level (MBL) change was calculated with radiography. Results: The overall survival rate was 92.11%. Mean ISQ value and MBL change of survival implants was 66.26 and $0.14{\pm}0.31mm$, respectively. None of the implants with platform diameters larger than the body diameter failed. Conclusion: In conclusion, the findings of present study suggest that narrow diameter implant could be predictable treatment in narrow alveolar ridge.
We can and must improve the diagnostic images using available knowledge and technology. At the same time we must strive to reduce the patient's integral and entrance radiation dose. Reducing the integral dose to the patient during the radiologic procedure is a primary concern of the patient, especially the pediatric patient, the radiologist and the technologist. A 100cm focal film distance generally is used for most over-table radiography. The early x-ray tubes and screen film combinations required long exposures, which often resulted in motion artifacts. But nowaday, we have the generators and x-ray tubes that can deliver the energy necessary in a very short time and the receptors that can record the information just as rapidly. And, we performed this studies to evaluate the patient exposure dose and the image quality by increasing focal film distance in diagnostic radiography. There are many factors which affected to exposure factor, but we studied to verify of FFD increase, only. Effect of increasing the focal film distance to a 140 cm distance was tested as follows; 1. The focal film distances were set at 100, 120, and 140cm. 2. A 18cm acryl(tissue equivalent) phantom was placed on the table top. 3. An Capintec 192 electrometer with PM 05 ion chamber was placed at the entrance surface of the phantom, and exposure were made at each focal film distances. 4. The procedure was repeated in the same manner as above except the ion chamber was placed beneath the phantom at the film plane. 5. Exit exposure were normalize to 8mR for each portions of the experiment. Based on the success of the empirical measurements, a detailed mathematical analysis of the dose reduction was performed using the percent depth dose data. The results of this study can be summerized as followings ; 1) Increasing FFD from 100 cm to 140 cm, we would create a situation that would have a significant effect on the overall quality of radiograph and achive the 17.42% reduction of entrance dose and the 18.95% reduction of integral dose that the patient receives. 2) Thickness of Al step wedge for equal film density increased with the long distance. 3) Increasing FFD, Magnification of image was lowered. 4) Resolution of image also increased with the FFD. As the results described above, we strongly recommend using the long FFD to provide better information for our patients and profession in abdomen radiographic studies.
The purpose of this work was to evaluate an amorphous silicon cesium iodide based indirect flat-panel detector (FPD) in terms of their modulation transfer function (MTF), Wiener spectrum (WS, or noise power spectrum, NPS), and detective quantum efficiency (DQE). Measurements were made on flat-panel detector using the International Electrotechnical Commission (IEC) defined RQA3, RQA5, RQA7, and RQA9 radiographic technique. The MTFs of the systems were measured using an edge method. The WS(NPS) of the systems were determined for a range of exposure levels by two-dimensional (2D). Fourier analysis of uniformly exposed radiographs. The DQEs were assessed from the measured MTF, WS(NPS), exposure, and estimated ideal signal-to-noise ratios. Characteristic curve in the RQA3 showed difference in the characteristic curve from RQA5, RQA7, RQA9. MTFs were not differences according to x-ray beam quality. WS(NPS) was reduced with increasing dose, and RQA 3, RQA5, RQA7, RQA9 as the order is reduced. DQE represented the best in the 1mR, RQA 3, RQA5, RQA7, RQA9 decrease in the order. The physical imaging characteristics of FPD may also differ from input beam quality. This study gives an initial motivation that the physical imaging characteristics of FPD is an important issue for the right use of digital radiography system.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.