• Title/Summary/Keyword: radioactive source

Search Result 296, Processing Time 0.024 seconds

Iodine Deposition onto the Chinese Cabbage (요오드의 배추에 대한 침적)

  • Lee, Han-Soo;Choi, Heui-Joo;Kang, Hee-Suk;Yu, Dong-Han;Keum, Dong-Kwon;Lim, Kwang-Mook;Park, Hyo-Kook;Choi, Yong-Ho;Lee, Chang-Woo
    • Journal of Radiation Protection and Research
    • /
    • v.29 no.3
    • /
    • pp.173-177
    • /
    • 2004
  • The Chinese cabbage, being one of the principal foodstuffs in Asian countries, is tested for iodine exposure. As a radioactive source, iodine-125 of which the radiological half life is 60 days was used to measure the concentration change. Experiments were carried out four times with different times of exposure. The iodine source was prepared by the chemical reaction of NaI in order to avoid producing relatively large iodine which might be generated In the case of crystal evaporation. The deposition velocity was obtained from the integrated air concentration and surface concentration of the Chinese cabbage. The environmental half life was also calculated.

Development of Three-Dimensional Gamma-ray Camera (방사선원 3차원 위치탐지를 위한 방사선 영상장치 개발)

  • Lee, Nam-Ho;Hwang, Young-Gwan;Park, Soon-Yong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.2
    • /
    • pp.486-492
    • /
    • 2015
  • Radiation source imaging system is essential for protecting of radiation leakage accidents and minimizing damages from the radioactive materials, and is expected to play an important role in the nuclear plant decommissioning area. In this study, the stereoscopic camera principle was applied to develop a new radiation imaging device technology that can extract the radiation three-dimensional position information. This radiation three-dimensional imaging device (K3-RIS) was designed as a compact structure consisting of a radiation sensor, a CCD camera, and a pan-tilt only. It features the acquisition of stereoscopic radiation images by position change control, high-resolution detection by continuous scan mode control, and stereoscopic image signal processing. The performance analysis test of K3-RIS was conducted for a gamma-ray source(Cs-137) in radiation calibration facility. The test result showed that a performance error with less than 3% regardless of distances of the objects.

Study of Radiation Mapping System for Water Contamination in Water System (방사능 수치 오염 지도 작성을 위한 방사선 계측 시스템 연구)

  • Na, Teresa W.;Kim, Han Soo;Yeon, Jei Won;Lee, Rena;Ha, Jang Ho
    • Journal of Radiation Industry
    • /
    • v.5 no.2
    • /
    • pp.185-189
    • /
    • 2011
  • As nuclear industry has been developed, a various types of radiological contamination has occurred. After 9.11 terror in U.S.A., it has been concerned that terrorists' active area has been enlarged to use nuclear or radioactive substance. Recently, the most powerful earth-quake stroke, which triggered a massive tsunami in Japan and then Fukushima nuclear power plant reactor has suffered from a serious accident in history. The Fukushima reactor accident has occurred an anxiety of radiation leaks and about 170,000 people have been evacuated from the accidental area near the nuclear power plant. For these reasons, a social chaos can be occurred if radiological contamination occurs to the supply system for the drinking water. As such, the establishment of the radiation monitoring system for the city main water system is compelling for the national security. In this study, a feasibility test of radiation monitoring system which consists of unified hybrid-type radiation detectors was experimented for multi detection system by using gamma-ray imaging. The hybrid-type radiation sensors were fabricated with CsI(Tl) scintillators and photodiodes. A preamplifier and amplifier was also fabricated and assembled with the sensor in the shielding case. For the preliminary test of detection of radiological contamination in the river, multi CsI(Tl)-PIN photodiode radiation detectors and $^{137}Cs$ gamma-ray source were used. The DAQ was done by Linux based ROOT program and NI DAQ system with Labview program. The simulated contamination was assumed to be occurred at Gapcheon river in Daejeon city. Multi CsI(Tl)-PIN photodiode radiation detectors were positioned at the Gapcheon river side. Assuming that the radiological contaminations flows in the river the $^{137}Cs$ gamma-ray source has been moved and then, the contamination region was reconstructed.

Solidification of uranium mill tailings by MBS-MICP and environmental implications

  • Niu, Qianjin;Li, Chunguang;Liu, Zhenzhong;Li, Yongmei;Meng, Shuo;He, Xinqi;Liu, Xinfeng;Wang, Wenji;He, Meijiao;Yang, Xiaolei;Liu, Qi;Liu, Longcheng
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3631-3640
    • /
    • 2022
  • Uranium mill tailing ponds (UMTPs) are risk source of debris flow and a critical source of environmental U and Rn pollution. The technology of microbial induced calcium carbonate precipitation (MICP) has been extensively studied on reinforcement of UMTs, while little attention has been paid to the effects of MICP on U & Rn release, especially when incorporation of metakaolin and bacillus subtilis (MBS). In this study, the reinforcement and U & Rn immobilization role of MBS -MICP solidification in different grouting cycle for uranium mill tailings (UMTs) was comprehensively investigated. The results showed that under the action of about 166.7 g/L metakaolin and ~50% bacillus subtilis, the solidification cycle of MICP was shortened by 50%, the solidified bodies became brittle, and the axial stress increased by up to 7.9%, and U immobilization rates and Rn exhalation rates decrease by 12.6% and 0.8%, respectively. Therefore, the incorporation of MBS can enhance the triaxial compressive strength and improve the immobilization capacity of U and Rn of the UMTs bodies solidified during MICP, due to the reduction of pore volume and surface area, the formation of more crystals general gypsum and gismondine, as well as the enhancing of coprecipitation and encapsulation capacity.

Lithologic and Structural Controls and Geochemistry of Uranium Deposition in the Ogcheon Black-Slate Formation (옥천대(沃川帶) 우라늄광층(鑛層)의 구조규제(構造規制) 및 지구화학적(地球化學的) 특성연구(特性硏究))

  • Lee, Dai Sung;Yun, Suckew;Lee, Jong Hyeog;Kim, Jeong Taeg
    • Economic and Environmental Geology
    • /
    • v.19 no.spc
    • /
    • pp.19-41
    • /
    • 1986
  • Structural, radioactive, petrological, petrochemical, mineralogical and stable isotopic study as well as the review of previous studies of the uranium-bearing slates in the Ogcheon sequence were carried out to examine the lithological and structural controls, and geochemical environment in the uranium deposition in the sequence. And the study was extended to the coal-bearing formation (Jangseong Series-Permian) to compare the geochemical and sedimentologic aspects of uranium chemistry between Ogcheon and Hambaegsan areas. The results obtained are as follows: 1. The uranium mineralization occurs in the carbonaceous black slates of the middle to lower Guryongsan formation and its equivalents in the Ogcheon sequence. In general, two or three uranium-bearing carbonaceous beds are found with about 1 to 1.5km stratigraphic interval and they extend from Chungju to Jinsan for 90km in distance, with intermittent igneous intrusions and structural Jisturbances. Average thickness of the beds ranges from 20 to 1,500m. 2. These carbonaceous slate beds were folded by a strong $F_1$-fold and were refolded by subsequent $F_1$-fold, nearly co-axial with the $F_1$, resulting in a repeated occurrence of similar slate. The carbonaceous beds were swelled in hing zones and were shrinked or thined out in limb by the these foldings. Minor faulting and brecciation of the carbonaceous beds were followed causing metamorphism of these beds and secondary migration and alteration of uranium minerals and their close associations. 3. Uranium-rich zones with high radioactive anomalies are found in Chungju, Deogpyong-Yongyuri, MiwonBoun, Daejeon-Geumsan areas in the range of 500~3,700 cps (corresponds to 0.017~0.087%U). These zones continue along strike of the beds for several tens to a few hundred meters but also discontinue with swelling and pinches at places that should be analogously developed toward underground in their vertical extentions. The drilling surveyings in those area, more than 120 holes, indicate that the depth-frequency to uranium rich bed ranging 40~160 meter is greater. 4. The features that higher radioactive anomalies occur particularly from the carbonaceous beds among the argillaceous lithologic units, are well demonstrated on the cross sections of the lithology and radioactive values of the major uranium deposits in the Ogcheon zone. However, one anomalous radioactive zone is found in a l:ornfels bed in Samgoe, near Daejeon city. This is interpreted as a thermal metamorphic effect by which original uranium contents in the underlying black slate were migrated into the hornfels bed. 5. Principal minerals of the uranium-bearing black slates are quartz, sericite, biotite and chlorite, and as to chemical composition of the black slates, $Al_2O_3$ contents appear to be much lower than the average values by its clarke suggesting that the Changri basin has rather proximal to its source area. 6. The uranium-bearing carbonaceous beds contain minor amounts of phosphorite minerals, pyrite, pyrrhotite and other sulfides but not contain iron oxides. Vanadium. Molybdenum, Barium, Nickel, Zirconium, Lead, Cromium and fixed Carbon, and some other heavy metals appear to be positive by correlative with uranium in their concentrations, suggesting a possibility of their genetic relationships. The estimated pH and Eh of the slate suggests an euxenic marine to organic-rich saline water environment during uranium was deposited in the middle part of Ogcheon zone. 7. The Carboniferous shale of Jangseong Series(Sadong Series) of Permian in Hambaegsan area having low radioactivity and in fluvial to beach deposits is entirely different in geochemical property and depositional environment from the middle part of Ogcheon zone, so-called "Pibanryong-Type Ogcheon Zone". 8. Synthesizing various data obtained by several aspects of research on uranium mineralization in the studied sequence, it is concluded that the processes of uranium deposition were incorporated with rich organic precipitation by which soluble uranyl ions, $U{_2}^{+{+}}$ were organochemically complexed and carried down to the pre-Ogcheon sea bottoms formed in transitional environment, from Red Sea type basin to Black Sea type basin. Decomposition of the organic matter under reducing conditions to hydrogen sulfide, which reduced the $UO{_2}^{+2}$ ions to the insoluble uranium dioxide($UO_2$), on the other side the heavy metals are precipitated as sulfides. 9. The EPMA study on the identification of uraninite and others and the genetic interpretation of uranium bearing slates by isotopic values of this work are given separately by Yun, S. in 1984.

  • PDF

Determining Optimum Pumping Rates of Groundwater in Ttansum Island Related to Riverbank Filtration

  • Lee, Chung-Mo;Hamm, Se-Yeong;Choo, Yeon-Woo;Kim, Hyoung-Soo;Cheong, Jae-Yeol
    • Journal of Environmental Science International
    • /
    • v.27 no.10
    • /
    • pp.831-844
    • /
    • 2018
  • Riverbank Filtration (RBF) is a kind of indirect artificial recharge method and is useful in obtaining higher-quality source water than surface water when procuring municipal water. This study evaluated optimal riverbank filtered water and the productivity of the radial collector wells on Ttansum Island in the area downstream of the Nakdong River, where Gimhae City is constructing a municipal water plant for the purpose of acquiring high-quality water. The RBF wells are planned to provide water to the citizens of Gimhae City through municipal water works. Groundwater flow modeling was performed with the following four scenarios: (a) 9 radial collector wells, (b) 10 radial collector wells, (c) 10 radial collector wells and two additional vertical wells, and (d) 12 radial collector wells. This study can be useful in determineing the optimum production rate of bank filtrated water not only in this study area but also in other places in Korea.

Development of Statistical Package for Uncertainty and Sensitivity Analysis(SPUSA) and Application to High Level Waste Repostitory System (불확실도와 민감도 분석용 통계 패키지(SPUSA)개발 및 고준위 방사성 폐기물 처분 계통에의 응용)

  • Kim, Tae-Woon;Cho, Won-Jin;Chang, Soon-Heung;Le, Byung-Ho
    • Nuclear Engineering and Technology
    • /
    • v.19 no.4
    • /
    • pp.249-265
    • /
    • 1987
  • For the probabilistic risk assessment of the high level radioactive waste repository, some methods have been proposed up to now. Since the system has highly uncertain input parameters, the evaluated risk for some input parameter values has high uncertainty. In this paper, methods of uncertainty and sensitivity analysis are devised to analyse systematically these factors and applied to a probabilistic risk assessment model of the high level waste repository, The statistical package SPUSA developed through this study can be used for any other fields, e.g., statistical thermal margin analysis, source term uncertainty analysis, etc.

  • PDF

Estimation of natural radionuclide and exhalation rates of environmental radioactive pollutants from the soil of northern India

  • Devi, Vandana;Chauhan, Rishi Pal
    • Nuclear Engineering and Technology
    • /
    • v.52 no.6
    • /
    • pp.1289-1296
    • /
    • 2020
  • The estimation of radioactivity level is vital for population health risk assessment and geological point of view and can be evaluated as rate of exhalation and source concentration (226Ra, 232Th and 40K). The present study deals with the soil samples for investigation of radionuclides content and exhalation rates of radon -thoron gas from different sites in northern Haryana, India. Absorbed dose and associated index estimated in the present study are the measures of environmental radioactivity to inhalation dose. Effective doses received by different tissues and organs by considering different occupancy and conditions are also measured. Exhalation rates of radon and thoron are measured with active scintillation monitors based on alpha spectroscopy namely scintillation radon (SRM) and thoron (STM) monitors respectively. Sample height was optimized before measurement of thoron exhalation rate using STM. Average values of radon and thoron exhalation are found 16.6 ± 0.7 mBqkg-1h-1 and 132.1 ± 2.6 mBqm-2s-1 respectively. Also, a simple approach was also adopted, to evaluate the thoron exhalation which accomplished a lot of challenges, the results are compared with the data obtained experimentally. The study is useful in the nationwide mapping of radon and thoron exhalation rates for understanding the environmental radioactivity status.

MIGSHIELD: A new model-based interactive point kernel gamma ray shielding package for virtual environment

  • Li, Mengkun;Xu, Zhihui;Li, Wei;Yang, Jun;Yang, Ming;Lu, Hongxin;Dai, Xinyu
    • Nuclear Engineering and Technology
    • /
    • v.52 no.7
    • /
    • pp.1557-1564
    • /
    • 2020
  • In this paper, 3D model-based interactive gamma ray shielding package (MIGSHIELD) is developed in virtual reality platform for windows operating system. In MIGSHIELD, the computational methodology is based on point kernel algorithm (PK), several key parameters of PK are obtained using new technique and new methods. MIGSHIELD has interactive capability with virtual world. The main features made in the MIGSHIELD are (i) handling of physical information from virtual world, (ii) handling of arbitrary shapes radioactive source, (iii) calculating the mean free path of gamma ray, (iv) providing interactive function between PK and virtual world, (v) making better use of PK for virtual simulation, (vi) plug and play. The developed package will be of immense use for calculations involving radiation dose assessment in nuclear safety and contributing to fast radiation simulation for virtual nuclear facilities.

Image Recovery Using Nonlinear Modeling of Industrial Radiography (산업용방사선영상의 비선형모델링에 의한 영상복구)

  • Hwang, Jung-Won;Hwang, Jae-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.4
    • /
    • pp.71-77
    • /
    • 2008
  • This paper presents a methodology for recovering the industrial radiographic images from the effects of nonlinear distortion. Analytical approach based on the inverse square law and Beer's law is developed in order to improve a mathematic model of nonlinear type. The geometric effect due to dimensions of the radioactive source appeals on the digitized images. The relation that expresses parameters values(angle, position, absorption coefficient, length, width and pixel account) is defined in this model, matching with the sample image. To perform the search for image recovery most similar to the model, a correction procedure is designed. The application of this method on the radiographic images of steel tubes is shown and recovered results are discussed.