• Title/Summary/Keyword: radioactive cesium

검색결과 127건 처리시간 0.024초

Cesium separation from radioactive waste by extraction and adsorption based on crown ethers and calixarenes

  • Wang, Jianlong;Zhuang, Shuting
    • Nuclear Engineering and Technology
    • /
    • 제52권2호
    • /
    • pp.328-336
    • /
    • 2020
  • Cesium is a major product of uranium fission, which is the most commonly existed radionuclide in radioactive wastes. Various technologies have been applied to separate radioactive cesium from radioactive wastes, such as chemical precipitation, solvent extraction, membrane separation and adsorption. Crown ethers and calixarenes derivatives can selectively coordinate with cesium ions by ion-dipole interaction or cation-π interaction, which are promising extractants for cesium ions due to their promising coordinating structure. This review systematically summarized and analyzed the recent advances in the crown ethers and calixarenes derivatives for cesium separation, especially focusing on the adsorbents based on extractants for cesium removal from aqueous solution, such as the grafting coordinating groups (e.g. crown ether and calixarenes) and coordinating polymers (e.g. MOFs) due to their unique coordination ability and selectivity for cesium ions. These adsorbents combined the advantages of extraction and adsorption methods and showed high adsorption capacity for cesium ions, which are promising for cesium separation The key restraints for cesium separation, as well as the newest progress of the adsorbents for cesium separation were also discussed. Finally, some concluding remarks and suggestions for future researches were proposed.

Effective removal of non-radioactive and radioactive cesium from wastewater generated by washing treatment of contaminated steel ash

  • P. Sopapan;U. Lamdab;T. Akharawutchayanon;S. Issarapanacheewin;K. Yubonmhat;W. Silpradit;W. Katekaew;N. Prasertchiewchan
    • Nuclear Engineering and Technology
    • /
    • 제55권2호
    • /
    • pp.516-522
    • /
    • 2023
  • The co-precipitation process plays a key role in the decontamination of radionuclides from low and intermediate levels of liquid waste. For that reason, the removal of Cs ions from waste solution by the co-precipitation method was carried out. A simulated liquid waste (133Cs) was prepared from a 0.1 M CsCl solution, while wastewater generated by washing steel ash served as a representative of radioactive cesium solution (137Cs). By co-precipitation, potassium ferrocyanide was applied for the adsorption of Cs ions, while nickel nitrate and iron sulfate were selected for supporting the precipitation. The amount of residual Cs ions in the CsCl solution after precipitation and filtration was determined by ICP-OES, while the radioactivity of 137Cs was measured using a gamma-ray spectrometer. After cesium removal, the amount of cesium appearing in both XRD and SEM-EDS was analyzed. The removal efficiency of 133Cs was 60.21% and 51.86% for nickel nitrate and iron sulfate, respectively. For the ash-washing solution, the removal efficiency of 137Cs was revealed to be more than 99.91% by both chemical agents. This implied that the co-precipitation process is an excellent strategy for the effective removal of radioactive cesium in waste solution treatment.

수질오염 제염을 위한 세슘 선택성 상자성 코어 무기복합제염제 개발 (Development of Cesium-selective Paramagnetic Core Inorganic Composite Agent for Water Decontamination)

  • 홍성표;강보선
    • 방사선산업학회지
    • /
    • 제18권2호
    • /
    • pp.127-132
    • /
    • 2024
  • Large amounts of liquid radioactive waste or radioactive contaminated water could be produced during the treatment of radiation accidents or during the dismantling and decontamination process of nuclear power plants. Since most of the decontamination agents to date are difficult to recover after adsorption of radioactive isotopes, their use in open environments such as rivers, reservoirs, or oceans is limited. In this study, as a radioactive decontamination agent that can overcome the current limitations when used in an open environment, a paramagnetic core inorganic composite (PMCIC) decomposite agent with high selectivity to cesium ions was developed. PMCore was prepared by synthesizing paramagnetic iron oxide nanoparticles, and inorganic crystals such as metal-ferrocyanide were conjugated to the surface so that PMCore could be selective to cesium ions. The developed PMCIC could be easily recovered from the water by magnetism and could adsorb up to 94 μM of Cs atoms per 1 g of PMCIC.

Fundamental study on volume reduction of cesium contaminated soil by using magnetic force-assisted selection pipe

  • Nishimura, Ryosei;Akiyama, Yoko;Manabe, Yuichiro;Sato, Fuminobu
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제23권3호
    • /
    • pp.26-31
    • /
    • 2021
  • Advanced classification of Cs contaminated soil by using a magnetic force-assisted selection pipe was investigated. A selection pipe is a device that sort particles depending on their particle size, based on the relationship between buoyancy, drag, and gravity force acting on the particles. Radioactive cesium is concentrated in small-particle size soil components with a large specific surface area. Hence, the volume of the Cs contaminated soil can be reduced by recycling the large-particle size soil components with low radioactive concentration. One of the problems of the selection pipe was that the radioactive concentration of the stayed soil in the selection pipe exceeds 8000 Bq/kg, which is the standard value of recycling of Cs contaminated soil, due to low classification accuracy. In this study, magnetic fields were applied to the lab-scale selection pipe from upper side to improve the classification accuracy and to reduce the radioactive concentration of the stayed soil.

Initial Release of Nuclides from Spent PWR Fuels

  • Kim, S. S.;K. S. Chun;Kim, Y. B.;Park, J. W.
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2004년도 Proceedings of the 4th Korea-China Joint Workshop on Nuclear Waste Management
    • /
    • pp.238-244
    • /
    • 2004
  • The relationship between the leaching and gap inventory of spent fuel has been studied. When a specimen of J44H08 spent PWR fuel with 38 GWD/MTU has been leached in the synthetic granitic groundwater in Ar atmosphere, the released fraction of cesium was increased rapidly up to 0.7% at around 500 days and stayed below 0.8% until 3 years. This 0.7% of cesium might be released from the gap in this fuel. The measurement of gap inventory with C15I08 spent PWR fuel, having 35 GWD/MTU and 0.22% of fission gas release, was also determined near 0.6% for the cesium, which is a similar fraction of cesium released from the leaching experiment with J44H08 fuel. Its gap inventories of strontium and iodine were about 0.03 and less than 0.2% respectively. Respective fractions of cesium and strontium in grain boundary of C15I08 were 0.78, 0.09%.

  • PDF

응집제를 적용한 토양세척 공정에서의 세슘 제염 성능 평가 연구 (A Study on the Decontamination Performance of Cesium by Soil Washing Process With Flocculating Agent)

  • 송종순;김선일
    • 방사성폐기물학회지
    • /
    • 제16권1호
    • /
    • pp.41-47
    • /
    • 2018
  • 원전사고 및 시설보수 과정에서 방출되는 방사성물질 중 $^{137}Cs$은 토양의 주 오염원 중 하나이다. 세슘으로 인한 토양오염은 주민의 거주 및 공업용지로의 재사용을 위해 제염이 불가피하다. 본 연구에서는 다양한 토양복원 기술 중 국내 외에서 실제 방사성물질로 오염된 토양에 적용한 사례가 있는 토양세척 기술을 선정하였다. 토양세척 공정은 세척제를 사용하여 토양과 세슘의 표면장력을 약화시켜 토양과 세슘을 분리하는 원리이다. 이러한 토양세척 공정의 세척수 재사용을 통해 공정효율을 높이고자 세척수에 응집제를 적용하여 미세토양 및 세슘의 제거 성능 실험을 수행하였다. ICP-OES를 통해 세슘 수용액에 토양을 첨가하여 세슘을 흡착시킨 후 응집제를 첨가하여 세슘의 농도를 측정하였으며 응집제 적용시 최대 세슘 제거율은 약 88%, 최소는 67%였다. Visual MINTEQ Code를 통한 세슘과 토양과의 종결합을 예측하였으며 탁도 측정을 통해 응집제 투여 후 탁도를 측정하여 세척수의 재사용 여부 및 미세토양 제거율을 분석하였다.

Clinoptillolite에 의(依)한 Cs-137 핵종(核種) 흡착(吸着)에 관(關)한 연구(硏究) (The Study on the Fixation of Cs-137 Radionuclide in Clinoptillolite - The Fixation of Cesium in Clinoptillolite -)

  • 이상훈;성낙준;박원종
    • Journal of Radiation Protection and Research
    • /
    • 제3권1호
    • /
    • pp.1-5
    • /
    • 1978
  • Cs-137과 같은 반감기가 긴 방사성 핵종을 함유한 저준위 방사성 액체 폐기물을 국산 제올라이트 일종인 Clinoptillolite를 이용해서 처리할 수 있는가를 연구했다. Column 장치를 사용하여 Break-Through Curve를 얻어서 미국의 광물전문회사인 WARD에서 분류한 천연 Clinoptillolite 원광과 비교한 결과, 국산 Clinoptillolite에는 Break-Through Curve의 모양에 'Tailing'이 일어나는 것을 나타냈다. 국산 Clinoptillolite에 500ppm의 Cesium 용액에 $2.5{\times}10^{-3}{\mu}Ci/ml$의 Cs-137을 넣어서 Cesium 이온고정능력을 실험한 결과 132meq/100g이 고정되었다. 또한 Tracer로 넣은 Cs-137이 $75{\mu}Ci/100g$이 고정됨을 보여주었다.

  • PDF

Long-term Dissolution Behavior of Cesium from Spent PWR Fuel in Contact with Compacted Bentonite under Synthetic Granitic Groundwater

  • Chun, Kwan-Sik;Kim, Seung-Soo;Bak, Seong-Jea;Park, Jongwon
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2004년도 학술논문집
    • /
    • pp.167-173
    • /
    • 2004
  • The amount of cesium released from the leaching of spent fuels in contact with and without the compacted bentonite bloc]t which was compacted as the density of $1.4g/\textrm{cm}^3$, up to 5.7 years were measured and the empirical formula of the fractional release rate of cesium were derived from these measured values. The empirical formulas show that the long-term release rate of cesium under a repository would become a constant, as about $3{\times}10_{-6}$ fraction/day, after a certain period. The cumulative fractions of cesium released from the spent fuel with bentonite and with copper and stainless steel sheets were steadily increased, but the fraction from bare fuel was rapidly increased and then sluggishly increased. However, the remained value except its gap inventory from the cumulative fraction of cesium released from bare fuel was almost very close to the others. This suggests that the initial release of cesium from bare fuel might be dependant on its gap inventory.

  • PDF

프러시안 블루-알지네이트 비드를 이용한 세슘 제거 연구 (A Study of Cesium Removal Using Prussian Blue-Alginate Beads)

  • 박소언;민수정;서범경;노창현;홍상범
    • 방사선산업학회지
    • /
    • 제18권1호
    • /
    • pp.89-93
    • /
    • 2024
  • Accidents at nuclear facilities and nuclear power plants led to leaks of large amounts of radioactive substances. Of the various radioactive nuclides released, 137Cs are radioactive substances generated during the fission of uranium. Therefore, due to the high fission yield (6.09%), strong gamma rays, and a relatively long half-life (30 years), a rapid and efficient removal method and a study of adsorbents are needed. Accordingly, an adsorbent was prepared using Prussian blue (PB), a material that selectively adsorbs radioactive cesium. As a result of evaluating the adsorption performance with the prepared adsorbent, it was confirmed that 82% of the removal efficiency was obtained, and most of the cesium was rapidly adsorbed within 10 to 15 minutes. The purpose of this study was to adsorb cesium using the Prussian blue alginate bead and to compare the change in detection efficiency according to the amount of adsorbent added for quantitative evaluation. However, in this case, it is difficult to determine the detection efficiency using a standard source with the same conditions as the measurement sample, so the efficiency change of the HPGe detector according to the different heights of Prussian blue was calculated through MCNP simulation using certified standard materials (1 L, Marinelli beaker) for radioactivity measurement. It is expected to derive a relational equation that can calculate detection efficiency through an efficiency curve according to the volume of Prussian blue, quantitatively evaluate the activity at the same time as the adsorption of radioactive nuclides in actual contaminated water and use it in the field of nuclear facility operation and dismantling in the future.