• Title/Summary/Keyword: radio-fluoroscopy

Search Result 14, Processing Time 0.023 seconds

A Study on Scattered Dose in Operation Room by C-arm Unit (수술중 C-arm 장치의 사용에 따른 공간선량 분포에 관한 연구)

  • An, Sung-Min;Oh, Jung-Hwan;Kim, Sung-Chul
    • Journal of radiological science and technology
    • /
    • v.23 no.2
    • /
    • pp.69-73
    • /
    • 2000
  • This paper studied a C-arm's exposure condition and measured scatter rays by thickness and distance. This study reached the following conclusion. 1. Approrimately exposure dose for a patient using fluoroscopy is as follows : 2. Mostly, an operating room was not shielding by lead and operator put on only apron without thyroid and facial part protection. 3. 0.5 mmPb equivalent's apron shielded about 99% of scattered rays at 60 cm from x-ray tube. 4. Scattered rays are depended on distance and thickness so operators are should be careful when using fluoroscopy by C-arm and if possible use high frequency equipment that has a large output.

  • PDF

Reduction of Quantum Noise using Adaptive Weighted Median filter in Medical Radio-Fluoroscoy Image (적응성 가중 메디안 필터를 이용한 의료용 X선 투시 영상의 양자잡음 제거)

  • Lee, Hoo-Min;Nam, Moon-Hyon
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.10
    • /
    • pp.468-476
    • /
    • 2002
  • Digital images are easily corrupted by noise during the data transmission, data capture and data processing. A technical method of noise analyzing and adaptive filtering for reducing of quantum noise in medical radio-fluoroscopy images is presented. By adjusting the characteristics of the filter according to local statistics around each pixel of the image as moving windowing, it is possible to suppress noise sufficiently while preserve edge and other significant information required in diagnosis. We proposed adaptive weighed median(AWM) filters based on local statistics. We showed two ways of realizing the AWM filters. One is a simple type of AWM filter, which is constructed by Homogeneous factor(HF). Homogeneous factor(HF) from the noise models that enables the filter to recognize the local structures of the image is introduced, and an algorithm for determining the HF fitted to the diagnostic systems with various inner statistical properties is proposed. We show by the experimented that the performances of proposed method is superior to these of other filters and models in preserving small details and suppressing the noise at homogeneous region. The proposed algorithms were implemented by Visual C++ language on a IBM-PC Pentium 550 for testing purposes and the effects and results of the filter in the various levels of noise and images were proposed by comparing the values of NMSE(normalized mean square error) with the value of the other existing filtering methods.

A Non-invasive Real-time Respiratory Organ Motion Tracking System for Image Guided Radio-Therapy (IGRT를 위한 비침습적인 호흡에 의한 장기 움직임 실시간 추적시스템)

  • Kim, Yoon-Jong;Yoon, Uei-Joong
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.5
    • /
    • pp.676-683
    • /
    • 2007
  • A non-invasive respiratory gated radiotherapy system like those based on external anatomic motion gives better comfortableness to patients than invasive system on treatment. However, higher correlation between the external and internal anatomic motion is required to increase the effectiveness of non-invasive respiratory gated radiotherapy. Both of invasive and non-invasive methods need to track the internal anatomy with the higher precision and rapid response. Especially, the non-invasive method has more difficulty to track the target position successively because of using only image processing. So we developed the system to track the motion for a non-invasive respiratory gated system to accurately find the dynamic position of internal structures such as the diaphragm and tumor. The respiratory organ motion tracking apparatus consists of an image capture board, a fluoroscopy system and a processing computer. After the image board grabs the motion of internal anatomy through the fluoroscopy system, the computer acquires the organ motion tracking data by image processing without any additional physical markers. The patients breathe freely without any forced breath control and coaching, when this experiment was performed. The developed pattern-recognition software could extract the target motion signal in real-time from the acquired fluoroscopic images. The range of mean deviations between the real and acquired target positions was measured for some sample structures in an anatomical model phantom. The mean and max deviation between the real and acquired positions were less than 1mm and 2mm respectively with the standardized movement using a moving stage and an anatomical model phantom. Under the real human body, the mean and maximum distance of the peak to trough was measured 23.5mm and 55.1mm respectively for 13 patients' diaphragm motion. The acquired respiration profile showed that human expiration period was longer than the inspiration period. The above results could be applied to respiratory-gated radiotherapy.

Patient Radiation Dose Values During Interventional Cardiology Examinations in University Hospital, Korea (심장혈관 조영술과 심장혈관 인터벤션의 환자 선량 평가)

  • Kim, Jung-Su;Lee, Joun-Hyuk;Jung, Hae-Kyoung;Kim, Jung-Min;Cho, Byung Ryul
    • Journal of radiological science and technology
    • /
    • v.39 no.1
    • /
    • pp.27-33
    • /
    • 2016
  • The use of cardiac angiography (CA) and the interventional procedures is rapidly increasing due to the increase in modern adult diseases. Cardiovascular intervention (CI) is an examination method where radiation is applied to the same area for a long period, and thus may cause skin injury. In this study, we investigate the diagnostic reference level (DRL) of the cardiovascular intervention (CI) carried out by medical institutions and use it as a tool to reduce patient exposure dose. In this study, the DRL was set by acquiring information about the cumulative fluoroscopy time, cumulative fluoroscopy dose-area product (DAP), radiography DAP, cumulative DAP, air kerma, number of video clips, and the total number of images from the cardiac angiography and interventional procedures performed on 147 patients. The DAPs corresponding to the DRL of cardiac angiography(CA) and that of the interventional procedures were shown to be $44.4Gy{\cdot}cm2$ and $298.6Gy{\cdot}cm2$, respectively; the corresponding DRLs of fluoroscopy time were shown to be 191.5s and 1935.3s, respectively. A DRL is not a strict upper bound for radiation exposure. However, the process of setting, enacting, and reviewing the DRLs for the dose by medical institutions will contribute to a reduction in the unnecessary exposure dose of patients.

A Study on Acoustic Emission Characteristics of CFRP in aircraft operations (운항 중 실구조물(항공기 축소모델)에서의 탄소섬유강화플라스틱(CFRP)의 음향방출신호 특성에 관한 연구)

  • Lee, Kyung-Won;An, Ju-Seon;Hwang, Woong-Gi;Lee, Jong-Oh;Lee, Sang-Yul;Lee, Bo-Young
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.18 no.4
    • /
    • pp.59-66
    • /
    • 2010
  • Aerospace structures need high stability and long life because many personal injuries can result from an accident and securing structural integrity for various external environments is more important than any other thing. So first of all we must prove the destruction properties for operating environment, have prediction technology about damage evolution and life, and develop an economical non-destructive technology capable of detecting structure damage. Acoustic emission (AE) have no need of artificial environment like ultrasonic inspection or radio fluoroscopy to emit a certain energy, is a testing technique using seismic signal resulting from interior changes of solids, and enables to observe if any fault is appeared and it grows seriously or not while running. In this study we suggest the method of structural integrity evaluation for aerospace structures through the acoustic emission technique, for which a model plane was manufactured and an actual operation test was conducted.

The variability of tumor motion and respiration pattern in Stereotactic Body RadioTherapy(SBRT) for Lung cancer patients (RPM SystemTM을 이용한 호흡 관찰의 유용성 평가)

  • Park, hyun jun;Bae, sun myeong;Baek, Geum Mun;Kang, tae young;Seo, Dong Rin
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.28 no.1
    • /
    • pp.17-25
    • /
    • 2016
  • Purpose : The purpose of this study is to evaluate the variability of tumor motion and respiration pattern in lung cancer patients undergoing Stereotactic Body RadioTherapy(SBRT) by using On-Board imager (OBI) system and Real-time Position Management (RPM) System. Materials and Methods : This study population consisted of 60 lung cancer patient treated with stereotactic body radiotherapy (48 Gy / 4 fractions). Of these, 30 were treated with gating (group 1) and 30 without gating(group2): typically the patients whose tumors showed three-dimensional respiratory motion > 10 mm were selected for gating. 4-dimensional Computed Tomography (4DCT). Cone Beam CT (CBCT) and Fluoroscopy images were used to measure the tumor motion. RPM system was used to evaluate the variability of respiration pattern on SBRT for group1. Results : The mean difference of tumor motion among 4DCT, CBCT and Fluoroscopy images in the cranio-caudal direction was 2.3 mm in group 1, 2. The maximum difference was 12.5 mm in the group 1 and 8.5 mm in group 2. The number of treatment fractions that patient's respiration pattern was within Upper-Lower threshold on SBRT in group 2 was 31 fractions. A patient who exhibited the most unstable pattern exceeded 108 times in a fraction Conclusion : Although many patients in group 1 and 2 kept the reproducibility of tumor motion within 5 mm during their treatment, some patients exhibited variability of tumor motion in the CBCT and Fluoroscopy images. It was possible to improve the accuracy of dose delivery in SBRT without gating for lung cancer patient by using RPM system.

  • PDF

Intracardiac Foreign Body by Penetrating Cardiac Injury (관통성 손상에 의한 심장내 이물 - 수술 치험 1례 -)

  • 정진용
    • Journal of Chest Surgery
    • /
    • v.23 no.5
    • /
    • pp.929-935
    • /
    • 1990
  • Violence in our society, combined with improving transport system, resulted in increased numbers of patients with cardiac wounds reaching the hospital alive. Most patients with penetrating cardiac injury, rather than blunt injury, present with a syndrome of either hemorrhagic shock or cardiac tamponade. And they should be operated upon as soon as possible. Often the atrioventricular valves and other important cardiac structures are also damaged by the penetrating instruments or missile. Both intracardiac communications and atrioventricular fistulas may result in significant left-to-right shunts accompanied by congestive heart failure, necessitating surgical correction. Usually, retained cardiac foreign bodies, which are almost always bullets or fragments of missiles, may lie within a cardiac chamber or in the myocardium. Emboli of bullets or other missiles from distant sites to the right side of the heart are numerous enough to require attention. Recently we experienced a case with intracardiac foreign body due to penetrating cardiac injury. A 19 year-old man was admitted to our hospital due to penetrating anterior chest wound by iron segment. The roentgenogram of the chest revealed a radio-opaque metallic shadow in left lower chest around the cardiac apex, mild blunting of left costophrenic space, but no cardiomegaly. During operation the foreign body was noted to be present in the cardiac chamber by the portable C-arm fluoroscopy. But during the manipulation it moved into left inferior pulmonary vein from left ventricle by way of left atrium. So we could manage to remove it from left inferior pulmonary vein by direct approach to the vein. It was iron segment, sized 0.lcm x0.6cmx0.5cm, with sharp margins. The patient had an uneventful postoperative recovery except for chylopericardium and was discharged.

  • PDF

The Success Rate of Caudal Block Under Ultrasound Guidance and the Direction of the Needle in the Sacral Canal (초음파 영상의 유도를 이용한 미추경막외블록의 성공률과 천골관 내에서의 바늘의 방향)

  • Roh, Jang Ho;Kim, Won Oak;Yoon, Kyung Bong;Yoon, Duck Mi
    • The Korean Journal of Pain
    • /
    • v.20 no.1
    • /
    • pp.40-45
    • /
    • 2007
  • Background: Caudal block is useful when anesthesia for surgery or treatment for chronic pain is needed, but this procedure has a failure rate of up to 25% even when it performed byan experienced physician. This high failure rate is usually due to improper needle placement. Methods: After gaining approval of the ethics committee, 46 patients received caudal blocks under ultrasound guidance; these were performed after the anatomical structures in the sacral hiatus had been measured with ultrasound. All these procedures were performed by the same anesthesiologist. The position and direction of the needle were identified using fluoroscopy by injecting a radio-opaque contrast through the needle. The time taken from thelidocaine injection to verification of the needle was measured and the planned nerve block was then carried out. Results: All cases of needle insertion into the sacral canal under ultrasound guidance were successful. The average duration of the procedure and the trial count were $134.1{\pm}10.1seconds$ and $1.2{\pm}0.1$, respectively. In 12 of the 46 cases (26%), the needle deviated either left or right in the sacral canal, so the direction of the needle had to be adjusted. The distance between two cornua, the depth of the sacral hiatus and the thickness and length of the sacrococcygeal ligament were $17.1{\pm}0.4$, $3.9{\pm}0.3$, $2.3{\pm}0.1$ and $24.9{\pm}0.9mm$, respectively. Conclusions: Ultrasound guidance can increase the success rate of inserting a needle into the sacral canal. However, even when ultrasound is used, the needle can deviate either left or right in the sacral canal.

The Radiation Exposure of Radiographer Related to the Location in C-arm Fluoroscopy-guided Pain Interventions

  • Chang, Young Jae;Kim, Ah Na;Oh, In Su;Woo, Nam Sik;Kim, Hae Kyoung;Kim, Jae Hun
    • The Korean Journal of Pain
    • /
    • v.27 no.2
    • /
    • pp.162-167
    • /
    • 2014
  • Background: Although a physician may be the nearest to the radiation source during C-arm fluoroscope-guided interventions, the radiographer is also near the fluoroscope. We prospectively investigated the radiation exposure of radiographers relative to their location. Methods: The effective dose (ED) was measured with a digital dosimeter on the radiographers' left chest and the side of the table. We observed the location of the radiographers in each procedure related to the mobile support structure of the fluoroscope (Groups A, M and P). Data about age, height, weight, sex, exposure time, radiation absorbed dose (RAD), and the ED at the radiographer's chest and the side of the table was collected. Results: There were 51 cases for Group A, 116 cases for Group M and 144 cases for Group P. No significant differences were noted in the demographic data such as age, height, weight, and male to female ratio, and exposure time, RAD and ED at the side of the table. Group P had the lowest ED ($0.5{\pm}0.8{\mu}Sv$) of all the groups (Group A, $1.6{\pm}2.3{\mu}Sv$; Group M, $1.3{\pm}1.9{\mu}Sv$; P < 0.001). The ED ratio (ED on the radiographer's chest/ED at the side of the table) of Group A was the highest, and the ED radio of Group P was the lowest of all the groups (Group A, $12.2{\pm}21.5%$; Group M, $5.7{\pm}6.5%$; Group P, $2.5{\pm}6.7%$; P < 0.001). Conclusions: Radiographers can easily reduce their radiation exposure by changing their position. Two steps behind the mobile support structure can effectively decrease the exposure of radiographers by about 80%.