• 제목/요약/키워드: radio astronomy receiver system

검색결과 41건 처리시간 0.028초

A NEXT GENERATION MULTI-BEAM FOCAL PLANE ARRAY RECEIVER OF TRAO FOR 86-115 GHZ BAND

  • Chung Moon-Hee;Khaikin Vladimir B.;Kim Hyo-Ryoung;Lee Chang-Hoon;Kim Kwang-Dong;Park Ki-Won
    • Journal of Astronomy and Space Sciences
    • /
    • 제23권1호
    • /
    • pp.19-28
    • /
    • 2006
  • The noise temperature of existing millimeter-wave receivers is already within two or three times quantum noise limit. One of practical ways to increase the observation speed of single dish radio telescope without longer integration time is use of multi-beam focal plane array receiver as demonstrated in several large single dish radio telescopes. In this context the TRAO (Taeduk Radio Astronomy Observatory), which operates a 143n Cassegrain radio telescope, is planning to develop a 4 x 4 beams focal plane array SIS receiver system for 86-115 GHz band. Even though millimeter-wave HEMT LNA-based receivers approach the noise temperature comparable to the SIS receiver at W-band, it is believed that the receiver based on SIS mixer seems to offer a bit more advantages. The critical part of the multi-beam array receiver will be sideband separating SIS mixers. Employing such a type of SIS mixer makes it possible to simplify the quasi-optics of receiver. Otherwise, an SSB filter should be used in front of the mixer or some sophisticated post-processing of observation data is needed. In this paper we will present a preliminary design concept and components needed for the development of a new 3 mm band multi-beam focal plane array receiver.

Atmospheric Profiles from KOMPSAT-5 Radio Occultation : A Simulation Study

  • Lee, Woo-Kyoung;Cho, Sung-Ki;Jo, Jung-Hyun;Park, Jong-Uk;Yoon, Jae-Cheol;Lee, Jin-Ho;Chun, Yong-Sik
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2006년도 International Symposium on GPS/GNSS Vol.2
    • /
    • pp.53-56
    • /
    • 2006
  • KOMPSAT (KOrea Multi-Purpose SATellite)-5 for the earth observation and scientific research is scheduled to launch in 2009. The second payload, AOPOD (Atmosphere Occultation and Precision Orbit Determination) system, consists of a space-borne dual frequency GPS receiver and a laser retro reflector. GPS radio occultations from AOPOD system can be used to generate profiles of refractivity, temperature, pressure and water vapor in the neutral atmosphere with a high vertical resolution. Also the radio occultation in the ionosphere provides an inexpensive tool of vertical electron density profile. Currently, many LEO missions with GPS radio occultation receivers are on orbit and more GPS occultation missions are planed to launch in the near future. In this paper, we simulated radio occultation measurements from KOMPSAT-5 and retrieved atmospheric profiles using the simulated data.

  • PDF

MEASURING THE CORE SHIFT EFFECT IN AGN JETS WITH THE EXTENDED KOREAN VLBI NETWORK

  • JUNG, TAEHYUN;DODSON, RICHARD;HAN, SEOG-TAE;RIOJA, MARIA J.;BYUN, DO-YOUNG;HONMA, MAREKI;STEVENS, JAMIE;VICENTE, PABLO DE;SOHN, BONG WON
    • 천문학회지
    • /
    • 제48권5호
    • /
    • pp.277-284
    • /
    • 2015
  • We present our efforts for extending the simultaneous multi-frequency receiver system of the Korean Very Long Baseline Interferometry (VLBI) Network (KVN) to global baselines in order to measure the frequency-dependent position shifts in Active Galactic Nuclei (AGN) jets, the so called core shift effect, with an unprecedented accuracy (a few micro-arcseconds). Millimeter VLBI observations with simultaneous multi-frequency receiver systems, like those of the KVN, enable us to explore the innermost regions of AGN and high precision astrometry. Such a system is capable of locating the frequency dependent opacity changes accurately. We have conducted the feasibility test-observations with the interested partners by implementing the KVN-compatible systems. Here we describe the science case for measuring the core shift effect in the AGN jet and report progress and future plans on extending the simultaneous multi-frequency system to global baselines.

PERFORMANCE OF THE TRAO 13.7-M TELESCOPE WITH NEW SYSTEMS

  • Jeong, Il-Gyo;Kang, Hyunwoo;Jung, Jaehoon;Lee, Changhoon;Byun, Do-Young;Je, Do-Heung;Kang, Sung-Ju;Lee, Youngung;Lee, Chang Won
    • 천문학회지
    • /
    • 제52권6호
    • /
    • pp.227-233
    • /
    • 2019
  • We report the performance of the 13.7-meter Taeduk Radio Astronomy Observatory (TRAO) radio telescope. The telescope has been equipped with a new receiver, SEQUOIA-TRAO, a new backend system, FFT2G, and a new VxWorks operating system. The receiver system features a 16-pixel focal plane array using high-performance MMIC preamplifiers; it shows very low system noise levels, with system noise temperatures from 150 K to 450 K at frequencies from 86 to 115 GHz. With the new backend system, we can simultaneously obtain 32 spectra, each with a velocity coverage of 163 km s-1 and a resolution of 0.04 km s-1 at 115 GHz. The new operating system, VxWorks, has successfully handled the LMTMC-TRAO observing software. The main observing method is the on-the-fly (OTF) mapping mode; a position-switching mode is available for small-area observations. Remote observing is provided. The antenna surface has been newly adjusted using digital photogrammetry, achieving a rms surface accuracy better than 130 ㎛. The pointing uncertainty is found to be less than 5" over the entire sky. We tested the new receiver system with multi-frequency observations in OTF mode. The aperture efficiencies are 43±1%, 42±1%, 37±1%, and 33±1%, the beam efficiencies are 45±2%, 48±2%, 46±2%, and 41±2% at 86, 98, 110, and 115 GHz, respectively.

Design of the Control and Monitoring Architecture for the KVN 4 Channel Receiver System using Profibus

  • Song, Min-Gyu;Byun, Do-Young;Je, Do-Heung;Kang, Yong-Woo;Wi, Seog-Oh;Lee, Sung-Mo;Lee, Jung-Won;Chung, Moon-Hee;Kim, Seung-Rae;Jung, Tae-Hyun;Lee, Eui-Kyum;Lee, Sang-Hyun;Hwang, Jung-Wook
    • 천문학회보
    • /
    • 제43권2호
    • /
    • pp.57.3-57.3
    • /
    • 2018
  • KVN 수신기는 22/43/86/129GHz 주파수 대역의 우주전파를 관측할 수 있는 4채널 동시 관측 시스템의 핵심으로 다수의 제어 및 모니터 항목이 존재한다. 대표적인 예로 Synthesizer, Pcal, LO, Vacuum, Cryogenic Temperature 등이 있으며 이와 관련된 여러 인스트루먼트가 21m 전파망원경의 하부단에 위치한 수신기실 내에 분산 배치되어 있다. 이에 대한 효율적인 제어를 위해서는 사용자 컴퓨터 관점에서 두 가지 조건이 충족되어야 한다. 첫째, 물리적으로 분산된 인스트루먼트에 대한 접근 및 변경이 용이해야 하고, 둘째는 단일 인터페이스 상에서 다양한 인스트루먼트를 하나로 통합하는 확장성이 보장되어야 한다. 이러한 요건을 고려하여 KVN은 산업 분야에서 널리 쓰이고 있는 프로피버스를 수신기 시스템의 제어를 위한 기반 인터페이스로 활용 중에 있고, 추가 기능 요구에 효율적으로 대처하고 있다. 본 발표에서는 먼저 KVN 수신기 시스템을 구성하는 인스트루먼트에 대해 살펴보고자 한다. 그리고 이를 효율적으로 제어하기 위한 기반 인터페이스로서 프로피버스 구축 및 활용 현황에 대해 논하고자 한다.

  • PDF

PERFORMANCE OF THE SRAO 6-METER RADIO TELESCOPE

  • KOO BON-CHUL;PARK YONG-SUN;HONG SEUNG SOO;YUN HONG-SIK;LEE SANG-GAK;BYUN DO-YOUNG;LEE JUNG-WON;CHOI HAN-KyU;LEE SANG-SUNG;YOON YOUNG-ZOO;KIM KEE-TAE;KANG HYUN WOO;LEE JUNG-EuN
    • 천문학회지
    • /
    • 제36권1호
    • /
    • pp.43-48
    • /
    • 2003
  • We introduce and describe performance of the 6-meter telescope of Seoul Radio Astronomy Observatory (SRAO). All the softwares and instruments except the antenna structure and its driving system are developed for ourselves. The SIS mixer type receiver resulted in the receiver noise temperature less than 50 K (DSB) over the whole 3-mm radio window. An autocorrelation spectrometer, developed first in Korea, provides maximum 50 MHz band width over 1024 channels. Antenna surface is measured and adjusted using template method and radio holography which resulted in a superb surface accuracy bet-ter than 30${\mu}m$. Accordingly, the aperture and beam efficiences amount to $70\%$ and $75\%$, respectively, largely independent of frequency in the 85 - 115 GHz range. It is also found that telescope pointing errors are less than 10" in both azimuth and elevation and that antenna gain is almost constant against elevation greater than $20^{\circ}$, without adjusting sub-reflector position. The SRAO 6-meter telescope is now fully operational and all these characteristics verify that observations are carried out with high precision and fidelity.

우주전파 관측용 400MHz 대역 자기상관분광기 설계 및 제작 (A Design and Development of 400MHz Band Autocorrelaor for Radio Astronomy Observation)

  • 이창훈;최한규;김광동;한석태;정문희;김태성;구본철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 학술회의 논문집 정보 및 제어부문 A
    • /
    • pp.83-86
    • /
    • 2003
  • This paper is the research and development including the system design and the prototype system building of the wide-band digital autocorrelation spectrometer system for radio astronomy observation, which will be used as back-end signal processing unit of the Dual channel SIS receiver at Taeduk Radio Astronomy Observatory. So in this paper. we performed development of the high speed digitizing sampler, the circular memory buffer, and the correlator module for the 400MHz wide-band digital autocorrelator.

  • PDF

A diagram of the new TRAO observation system

  • Kang, Hyunwoo;Lee, Changhoon;Jung, Jae Hoon;Kim, Young Sik;Jeong, Il-Gyo
    • 천문학회보
    • /
    • 제40권2호
    • /
    • pp.55.1-55.1
    • /
    • 2015
  • Taeduk Radio Astronomy Observatory (TRAO) is about to jump with new system - 16 beams array receiver with low noise temperature, new observation system on VxWorks OS, and FX spectrometer for 32 input signals. We serve a quite obvious diagram to understand new TRAO observation system. This diagram will be quick guide for manager and observer.

  • PDF

DEVELOPMENT OF 2.8-GHZ SOLAR FLUX RECEIVERS

  • Yun, Youngjoo;Park, Yong-Sun;Kim, Chang-Hee;Lee, Bangwon;Kim, Jung-Hoon;Yoo, Saeho;Lee, Chul-Hwan;Han, Jinwook;Kim, Young Yun
    • 천문학회지
    • /
    • 제47권6호
    • /
    • pp.201-207
    • /
    • 2014
  • We report the development of solar flux receivers operating at 2.8 GHz to monitor solar radio activity. Radio waves from the sun are amplified, filtered, and then transmitted to a power meter sensor without frequency down-conversion. To measure solar flux, a calibration scheme is designed with a noise source, an ambient load, and a hot load at $100^{\circ}C$. The receiver is attached to a 1.8 m parabolic antenna in Icheon, owned by National Radio Research Agency, and observation is being conducted during day time on a daily basis. We compare the solar fluxes measured for last seven months with solar fluxes obtained by DRAO in Penticton, Canada, and by the Hiraiso solar observatory in Japan, and finally establish equations to convert observed flux to the so-called Penticton flux with an accuracy better than 3.2 sfu.

A MULTI-DIMENSIONAL REDUCTION METHOD OF LARGE-SCALE SURVEY DATABASE

  • Lee, Y.;Kim, Y.S.;Kang, H.W.;Jung, J.H.;Lee, C.H.;Yim, I.S.;Kim, B.G.;Kim, H.G.;Kim, K.T.
    • 천문학논총
    • /
    • 제28권1호
    • /
    • pp.7-13
    • /
    • 2013
  • We present a multi-dimensional reduction method of the surveyed cube database obtained using a single- dish radio telescope in Taeduk Radio Astronomy Observatory (TRAO). The multibeam receiver system installed at the 14 m telescope in TRAO was not optimized at the initial stage, though it became more stabilized in the following season. We conducted a Galactic Plane survey using the multibeam receiver system. We show that the noise level of the first part of the survey was higher than expected, and a special reduction process seemed to be definitely required. Along with a brief review of classical methods, a multi-dimensional method of reduction is introduced; It is found that the 'background' task within IRAF (Image Reduction and Analysis Facility) can be applied to all three directions of the cube database. Various statistics of reduction results is tested using several IRAF tasks. The rms value of raw survey data is 0.241 K, and after primitive baseline subtraction and elimination of bad channel sections, the rms value turned out to be 0.210 K. After the one-dimensional reduction using 'background' task, the rms value is estimated to be 0.176 K. The average rms of the final reduced image is 0.137 K. Thus, the image quality is found to be improved about 43% using the new reduction method.