• Title/Summary/Keyword: radio astronomy

Search Result 660, Processing Time 0.024 seconds

VLBI Phase Referencing and Astrometry with KVN and KaVA

  • Jung, Taehyun;Byun, Do-Young;Sohn, Bong Won
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.54.2-54.2
    • /
    • 2015
  • Phase referencing is an important tool to study weak radio sources, especially in mm-VLBI (Very Long Baseline Interferometry) which are usually too faint to be observed using conventional VLBI. VLBI astrometry is a unique method to measure the position and to identify radio emitting regions of a radio source with unprecedented angular resolution. In order to evaluate the phase referencing and astrometric capabilities of KVN and KaVA, several observations have been conducted and analyzed. I will present the observational results and discuss constraints and requirements for high precision VLBI astrometry.

  • PDF

On the Spectral Shape of Non-recycled γ-ray Pulsars

  • Hui, Chung-Yue;Lee, Jongsu
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.2
    • /
    • pp.101-104
    • /
    • 2016
  • More than 100 γ−ray pulsars have been discovered by the Fermi Gamma-ray Space Telescope. With a significantly enlarged sample size, it is possible to compare the properties of different classes. Radio-quiet (RQ) γ−ray pulsars form a distinct population, and various studies have shown that the properties of the RQ population can be intrinsically different from those of radio-loud (RL) pulsars. Utilizing these differences, it is possible to further classify the pulsar-like unidentified γ−ray sources into sub-groups. In this study, we suggest the possibility of distinguishing RQ/RL pulsars by their spectral shape. We compute the probabilities of a pulsar to be RQ or RL for a given spectral curvature. This can provide a key to the estimation of the intrinsic fraction of radio-quietness in the γ−ray pulsar population, which can place a tight constraint on the emission geometry.

RADIO IDENTIFICATIONS IN THE NEP DEEP FIELD

  • White, Glenn J.;Soto, Laia Barrufet de;Pearson, Chris;Serjeant, Stephen;Lim, Tanya;Matsuhara, Hideo;Sirothia, S.K.;Pal, S.;Karouzos, Marios;AKARI-NEP Team
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.231-233
    • /
    • 2017
  • We have imaged the AKARI Deep Field with the GMRT radio telescope at 610 MHz, detecting 1224 radio components, which are optically identified with 455 optical galaxies having a mean r' magnitude brighter of 22.5 (to a completeness limit of 25.4 mag), and an average redshift ~ 0.8.

HOW TO MONITOR AGN INTRA-DAY VARIABILITY AT 230GHZ

  • Kim, Jae-Young;Trippe, Sascha
    • Journal of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.65-74
    • /
    • 2013
  • We probe the feasibility of high-frequency radio observations of very rapid flux variations in compact active galactic nuclei (AGN). Our study assumes observations at 230GHz with a small 6-meter class observatory, using the SNU Radio Astronomical Observatory (SRAO) as an example. We find that 33 radio-bright sources are observable with signal-to-noise ratios larger than ten. We derive statistical detection limits via exhaustive Monte Carlo simulations assuming (a) periodic, and (b) episodic flaring flux variations on time-scales as small as tens of minutes. We conclude that a wide range of flux variations is observable. This makes high-frequency radio observations-even with small observatories-a powerful probe of AGN intra-day variability; especially, those which complement observations at lower radio frequencies with larger observatories like the Korean VLBI Network (KVN).

LARGE STORAGE SYSTEM FOR HIGH-SPEED RECORDING OF OBSERVED DATA (관측 데이터의 고속기록을 위한 대용량 저장시스템)

  • OH SE-JIN;ROH DUK-GYOO;KIM KWANG-DONG;SONG MIN-GYU;JE DO-HEUNG;WI SEOG-OH;KIM TAE-SUNG;WHITNEY ALAN R.
    • Publications of The Korean Astronomical Society
    • /
    • v.19 no.1
    • /
    • pp.83-92
    • /
    • 2004
  • In this paper, we introduce the development of the large storage system in order to record the observed space radio signal in the Korean VLBI Network(KVN) with high-speed. The KVN is the Very Long Baseline Interferometery(VLBI) to observe the birth of star, the structure of space by constructing radio telescope with diameter 21m at the Seoul, Ulsan, Jeju from 2001 to 2007 years. To do this, Korea Astronomy Observatory joined the international consortium for developing the high-speed large storage system(Mark 5), which is developed by MIT Haystack observatory. The Mark 5 system based on hard disk has to record up to 1 Gbps the observed space radio signal. The main features of Mark 5 system are as follows; First it is able to directly record the input data to the hard disk without PC1(Peripheral Component Interconnect) internal bus, and the second, it has two hard disk banks, which are able to hot-swap ATA/IDE type very cheap up to 1 Gbps recording and playback. The third is that it follows the international VLBI standard interface hardware(VSI-H). Therefore it can be connect directly the VSI-H type system at the input/output. Finally it also supports e- VLBI(Electronic-VLBI) through the standard Gigabits Ethernet connection.

The Determination of WGS84 coordinates for Seoul National University Radio Astronomy Observatory (GPS를 이용한 서울대학교 전파천문대의 WGS84 좌표 결정)

  • JOH JOENG-HO;PARK PIL-HO;PARK JONG-UK;HONG SEUNG-SOO;KOO BON-CHUL
    • Publications of The Korean Astronomical Society
    • /
    • v.15 no.1
    • /
    • pp.31-34
    • /
    • 2000
  • We determined the precise three dimensional WGS84 Coordinates and the sea level height of Seoul Radio Astronomy Observatory (SRAO). In this study, we performed the simultaneous GPS observations at SRAO and Seoul GPS Reference Station(SGRS) of Korea Astronomy Observatory(KAO) for 3.5 hours from 17KST on October 27, 1999. We employed two different antennas, i.e., chokering antenna at SGRS of KAO and L1/L2 compact with groundplane antenna at SRAO. But we employed same type of receivers, i.e., Trimble 4000SSI at both observing places. The observed data were processed by GPSURVEY 2.30 software of Trimble with L1/L2 ION Free technique and broadcasting ephemeris of GPS Satellites because of very short baseline between SGRS of KAO and SRAO. We determined WGS84 latitude, longitude, height and the sea level height of SRAO with $37^{\circ}\;27'\;15.'\;6846N\pm0.'\;0004,\;126^{\circ}\;57'\;19.'\;0727E\pm0.'\;0002,\;204.89m\pm0.02m,\;181.38m\pm0.17m$, respectively.

  • PDF

PROPERTIES OF THE MOLECULAR CLUMP AND THE ASSOCIATED ULTRACOMPACT H II REGION IN THE GAS SHELL OF THE EXPANDING H II REGION SH 2-104

  • Minh, Young Chol;Kim, Kee-Tae;Yan, Chi-Hung;Park, Yong-Sun;Lee, Seokho;Lal, Dharam Vil;Hasegawa, Tatsuhiko;Zhang, X.Z.;Kuan, Yi-Jeng
    • Journal of The Korean Astronomical Society
    • /
    • v.47 no.5
    • /
    • pp.179-185
    • /
    • 2014
  • We study the physical and chemical properties of the molecular clump hosting a young stellar cluster, IRAS 20160+3636, which is believed to have formed via the "collect and collapse" process. Physical parameters of the UC H II region associated with the embedded cluster are measured from the radio continuum observations. This source is found to be a typical Galactic UC H II region, with a B0.5 type exciting star, if it is ionized by a single star. We derive a CN/HCN abundance ratio larger than 1 over this region, which may suggest that this clump is being affected by the UV radiation from the H II region.

LOW FREQUENCY OBSERVATIONS OF A RADIO LOUD DWARF GALAXY

  • Park, Songyoun;Sengupta, Chandreyee;Sohn, Bong Won;Paudel, Sanjaya
    • Journal of The Korean Astronomical Society
    • /
    • v.50 no.5
    • /
    • pp.151-155
    • /
    • 2017
  • We investigate the radio properties of the dwarf galaxy SDSS J133245.62+263449.3 which shows optical signatures of black hole activity. Dwarf galaxies are known to host intermediate mass black holes (IMBHs) with masses $M_{BH}{\sim}10^{4-6}M_{\odot}$, some of them being radio loud. Recently, Reines et al. (2013) found dwarf galaxy candidates which show signatures of being black hole hosts based on optical spectral lines. SDSS J133245.62+263449.3 is one of them; it shows a flux density of ~ 20 mJy at 1.4 GHz, which corresponds to $L_{1.4GHz}{\sim}10^{23}W\;Hz^{-1}$. This is much brighter than other black hole host dwarf galaxies. However, star formation activity can contribute to radio continuum emission as well. To understand the nature of the radio emission from SDSS J133245.62+263449.3, we imaged this radio loud dwarf galaxy at low frequencies (325 MHz and 610 MHz) using the Giant Metrewave Radio Telescope (GMRT). We present here the high resolution images from our GMRT observations. While we detect no obvious extended emission from radio jets from the central AGN, we do find the emission to be moderately extended and unlikely to be dominated by disk star formation. VLBI observations using the Korean VLBI Network (KVN) are now being planned to understand the emission morphology and radiation mechanism.