• 제목/요약/키워드: radical ion pair

검색결과 6건 처리시간 0.017초

Solvent Effect on the Dynamics of Radical Ion Pair Separation

  • Han, Chul-Hee
    • Journal of Photoscience
    • /
    • 제8권1호
    • /
    • pp.33-37
    • /
    • 2001
  • Picosecond absorption spectroscopy has been employed in the study of the solvent dynamics of 1, 2, 4, 5-tetracyanobenzene/biphenyl derivative radical ion pairs, and the resulting rates of radical ion pair separation are faster in acetonitrile than in dichloromethane. In an effort to account quantitatively for such solvent effect on the rate of radical ion pair separation, an equation for the rate of radical ion pair separation is introduced, in which the rate depends exponentially on the electrostatic interaction energy in the radical ion pair. In our analysis of the types of electrostatic interaction energy based on the conducting spheres in dielectric continuum was chosen, and the rate equation employing this electrostatic energy provided information on the distance on the distance of radical ion pair separation and solvation energy of the radical ion pair, thereby providing quantitative explanation for the observed solvent effect on the rate of radical ion pair sepaaration.

  • PDF

연속흐름식 반응기를 이용한 모노-, 디-, 트리 클로로페놀의 광촉매반응에 관한 연구 (Photocatalytic Degradation of Mono-, Di-, Tri-chorophenols using continuous Flow Reactor)

  • 이상협;박중현
    • 상하수도학회지
    • /
    • 제12권1호
    • /
    • pp.88-95
    • /
    • 1998
  • The Electron/Hole Pair is generated when the Activation Energy produces by Ultraviolet Ray illumination to the Semiconductor. And $OH^-$ ion produces by Water Photo-Cleavage reacts with Positive Hole. As a result, OH Radical acting as strong oxidant is generated and then Photocatalytic Oxidation Reaction occurs. The Photocatalytic Oxidation can oxidize the chlorophenol to Chloride and Carbon Dioxide easier, safer and shorter than conventional Water Treatment Process With the same degree of chlorination, the $Cl^-$ ion at para (C4) position is most easily replaced by the OH radical. And then, the blocking effect of $OH^-$ ion between the $Cl^-$ ions and $Cl^-$ ions at symmetrical location is easily replaced by the OH radical. For mono-, di-, tri-chlorophenols, there is no obvious difference in decomposition rate, decomposition efficiency and completeness of the decomposition reaction except for 2,3-dichloropheno, 2,4,5-, 2,3,4-trichlorophenol. The decomposition efficiency is higher than 75% and completeness of the decomposition reaction is higher than 70%. Therefore, continuous flow photocatalytic reactor is promising process to remove the chlorinated aromatic compounds which is more toxic than non-chlorinated aromatic compound.

  • PDF

Mechanistic Studies on the Anormalous Photocycloaddition Reaction of 5-Styryl-1,3-dimethyluracil and 2,3-Dimethyl-2-butene: Formation of the “Apparent Forbidden” [$_\pi4_s + _\pi2_s$] Cycloadduct

  • Eun Ju Shin;Ho Kwon Kang;Sang Chul Shim
    • Bulletin of the Korean Chemical Society
    • /
    • 제12권4호
    • /
    • pp.434-437
    • /
    • 1991
  • Irradiation of 5-styryl-1,3-dimethyluracil (5-SDU) with 2,3-dimethyl-2-butene (DMB) gives a [4+2] cycloadduct which is converted into a [2+2] cycloadduct on the prolonged irradiation. Triplet sensitization, quenching, and external heavy atom effect on the [4+2] photocycloaddition reaction demonstrate the singlet pathway and salt effect excludes a radical ion pair precursor possibility. Polar solvents increase the reaction efficiency implying a polar exciplex involvement in the [4+2] photocycloaddition reaction. Inverse temperature dependence both on the reaction and DMB fluorescence quenching of 5-SDU indicates the presence of a singlet exciplex intermediate.

Theoretical Studies on the Gas-Phase Wittig-Oxy-Cope Rearrangement of Deprotonated Diallyl Ether

  • Kim, Chang-Kon;Lee, Ik-Choon;Lee, Hai-Whang;Lee, Bon-Su
    • Bulletin of the Korean Chemical Society
    • /
    • 제12권6호
    • /
    • pp.678-681
    • /
    • 1991
  • The Wittig-oxy-Cope rearrangements of deprotonated diallyl ether, I, $CH_2={\bar{C}}H-CH-O-CH_2-CH=CH_2$, have been investigated theoretically by the AM1 method. A two step mechanism forming a Wittig product ion, II, $(CH_2=CH)$ $(CH_2=CH-CH_2)$ $CHO^-$, through a radical-pair intermediate was found to provide the most favored reaction pathway in the Wittig rearrangement. The subsequent oxy-Cope rearrangement from species II also involves a two step mechanism through a biradicaloid intermediate. The intramolecular proton transfer in I (to form $CH_2=CH-CH_2-O-{\bar{C}}H-CH=CH_2$) is a higher activation energy barrier process compared to the Wittig and oxy-Cope rearrangements and is considered to be insignificant. These results are in good agreement with the condensed-phase as well as gas-phase experimental results.

광촉매(光觸媒) 산화(酸化) 반응(反應)을 이용한 클로로페놀 분해(分解)에 관한 연구(硏究) (A Study on the Removal of Chloro-Phenols by Photocatalytic Oxidation)

  • 이상협;박주석;박중현
    • 상하수도학회지
    • /
    • 제9권4호
    • /
    • pp.87-96
    • /
    • 1995
  • The Electron/Hole Pair is generated when the activation energy produced by ultraviolet ray illuminates to the semiconductor and OH- ion produced by water photocleavage reacts with positive Hole. As a results, OH radical acting as strong oxidant is generated and then Photocatalytic oxidation reaction occurs. The photocatalytic oxidation can oxidate the non-degradable and hazardous organic substances such as pesticides and aromatic materials easier, safer and shorter than conventional water treatment process. So in this study, many factors influencing the oxidation of chlorophenols, such as inorganic electrolytes addition, change of oxygen and nitrogen atmosphere, temperature, pH, oxygen concentration, chlorophenol concentration, were throughly examined. According to the experiments observations, it is founded that the rate of chlorophenol oxidation follows a first-order reaction and the modified Langmuir-Hinshelwood relationship. And the photocatalytic oxidation occurs only when activation energy acting as Electron/Hole generation, oxygen acting as electron acceptor to prevent Electron/Hole recombination, $TiO_2$ powder acting as photocatalyst are present. The effects of variation of dissolved oxygen concentration, temperature and inorganic electrolytes concentration on 2-chlorophenol oxidation are negligible. And the lower the organic concentration, the higher the oxidation efficiency becomes. Therefore, the photocatalytic oxidation is much effective to oxidation of hazardous substances at very low concentration. The oxidation is effective in the range of 0.1 g/L-10 g/L of $TiO_2$. Finally when the ultra-violet ray is illuminated to $TiO_2$, the surface characteristics of $TiO_2$ change and Adsorption/Desorption reaction on $TiO_2$ surface occurs.

  • PDF