• Title/Summary/Keyword: radiative convective equilibrium temperature

Search Result 3, Processing Time 0.023 seconds

The Variation of Radiative Equilibrium Temperatures with the Ice Crystal Habits and Sizes in Cirrus Clouds (권운 내 빙정의 종류와 크기에 따른 복사 평형 온도 변화)

  • Jee, Joon-Bum;Lee, Won-Hak;Lee, Kyu-Tae
    • Atmosphere
    • /
    • v.20 no.4
    • /
    • pp.427-436
    • /
    • 2010
  • The single-scattering optical properties of ice crystals in cirrus clouds by the aircraft measurement data were investigated, and the radiative equilibrium temperatures and radiative fluxes were calculated and analyzed by radiative convective model with the variations of ice crystal habits and sizes in cirrus clouds. The homogeneous cloud is assumed to be in the layer 200~260 hPa with an ice crystal content of $10gm^{-2}$ for the flux calculation. The profiles of temperature, humidity, and ozone typical of mid-latitude summer are used. The surface albedo is assumed to be 0.2 for all spectral bands and the cosine of solar zenith angles is 0.5. The result of radiative equilibrium temperature at surface was less than surface temperature of the standard atmosphere data in case of smaller effective ice crystal size and larger optical thickness. The column, aggregation and plate in 6 ice crystal habits were the most effective in positive greenhouse effect and bullet-4 was the worst in it. At the surface, the maximum difference of equilibrium temperature by 6 kinds of ice crystal habits were about 3~15 K with 30 sample aircraft measurement data.

Radiative Properties of King Sejong Station in West Antarctica with the Radiative Transfer Model: Climate Change using Radiative Convective Equilibrium Model (대기 복사 모형에 의한 세종기지에서의 복사학적 특징: 복사 대류 평형 모형을 이용한 기후 변화 연구)

  • Lee, Gyu-Tae;Lee, Bang-Yong;Jee, Joon-Bum;Yoon, Young-Jun;Lee, Won-Hak
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.1
    • /
    • pp.27-36
    • /
    • 2006
  • The radiative convective equilibrium (RCE) temperature was calculated for the climate change study at King Sejong Station in West Antarctica. As a result of RCE model sensitivity test, the increases of surface albedo, solar zenith angle, and cloud optical thickness decrease surface temperature. On the other hand, the increases of carbon dioxide and cirrus cloud amount are caused by surface warming due to the greenhouse effect. According to the model calculation result, annual mean surface temperature shows a upward trend of 0.012oC/year during the period of 1958-2001. During the period of 1989∼2001, the trend of monthly mean surface temperature by model calculation is 0.01oC/month and the observation trend is 0.005oC/month.

  • PDF

Estimating Stability Indices from the MODIS Infrared Measurements over the Korean Peninsula (MODIS 적외 자료를 이용한 한반도 지역의 대기 안정도 지수 산출)

  • Park, Sung-Hee;Chung, Eui-Seok;Koenig, Marianne;Sohn, B.J.
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.6
    • /
    • pp.469-483
    • /
    • 2006
  • An algorithm was developed to estimate stability indices (SI) over the Korean peninsula using Terra Moderate Resolution Imaging Spectroradiometer (MODIS) infrared brightness temperatures (TBs). The SI is defined as the stability of the atmosphere in the hydrostatic equilibrium with respect to the vertical displacements and is used as an index for the potential severe storm development. Using atmosphere temperature and moisture profiles from Regional Data Assimilation and Prediction System (RDAPS) as initial guess data for a nonlinear physical relaxation method, K index (KI), KO Index (KO), lifted index (LI), and maximum buoyancy (MB) were estimated. A fast radiative transfer model, RTTOV-7, is utilized for reducing the computational burden related to the physical relaxation method. The estimated TBs from the radiative transfer simulation are in good agreement with observed MODIS TBs. To test usefulness for the short-term forecast of severe storms, the algorithm is applied to the rapidly developed convective storms. Compared with the SIs from the RDAPS forecasts and NASA products, the MODIS SI obtained in this research predicts the instability better over the pre-convection areas. Thus, it is expected that the nowcasting and short-term forecast can be improved by utilizing the algorithms developed in this study.