• Title/Summary/Keyword: radiation-induced hydrocarbons

Search Result 20, Processing Time 0.014 seconds

Quantitative Analysis of Radiation-induced Hydrocarbons in Irradiated Chicken at Various Dose Levels

  • Kim, Eun-Ah;Lee, Hae-Jung;Yang, Jae-Seung;Kim, Kyong-Su
    • Preventive Nutrition and Food Science
    • /
    • v.3 no.4
    • /
    • pp.339-343
    • /
    • 1998
  • Gamma-irradiated chicken at dose levels of 0.1 to 10 kGy was subjected to detection of radiation-induced hydrocarbons whether irradiated or not. The hydrocarbons extracted from chicken fat were separated by florishil column chromatography and identified with GC-FID and GC/MS methods. Eight kinds of hydrocarbons were identified from irradiated chicken, among which 1, 7-hexadecadiene and 8-heptadencene were detected as major compounds , Remarkably radiation-induced hydrocarbons in irradiated chiken were detected at 0.5kGy and over. The concentration of radiation-induced hydrocarbons was relatively constant during 16 weeks.

  • PDF

Detection of Radiation-induced Hydrocarbons and 2-Alkylcyclobutanones from Peanuts

  • Lee, Hae-Jung;Lee, Myung-Yul;Kim, Kyung-Su
    • Preventive Nutrition and Food Science
    • /
    • v.4 no.4
    • /
    • pp.270-275
    • /
    • 1999
  • Radiation-induced hydrocarbons and 2-alkylcyclobutanones are formed from the fatty acids of irradiated fats. Peanuts were irradiated with a dose of 0.1∼10 kGy. The method consists of the extraction of fat from peanuts, separation of hydrocarbons and 2-alkylcyclobutanones with florisil column chromatography and identification of hydrocarbons by the GC/MS method and 2-alkylcyclobutanones by GC/MS/selected ion monitoring (SIM). Concentrations of hydrocarbons and 2-alkylcyclobutanones were linearly increased with the dose levels of radiation. The major hydrocarbons in the irradiated peanut samples were 8-heptadecene and 1,7-hexadecadiene from oleic acid and 6,9-heptadecadiene and 1,7,10-hexadecatriene from linoleic acid. 2-(5'-Tetradecenyl)cyclobutanone, one of 2-alkylcyclobutanones, was the highest amount in the irradiated peanuts. Radiation-induced hydrocarbons in the peanuts were detected at doses of 0.5 kGy and over, and radation-induced 2-alkylcyclobutanones were detected at doses of 1 kGy and over. These compounds were not confirmed in unirradiate peanuts.

  • PDF

The Microwave-Assisted Extraction of Fats from Irradiated Meat Products for the Detection of Radiation-Induced Hydrocarbons

  • Kwon, Joong-Ho;Kausar, Tusneem;Lee, Jeong-Eun;Kim, Hyun-Ku;Ahn, Dong-U
    • Food Science and Biotechnology
    • /
    • v.16 no.1
    • /
    • pp.150-153
    • /
    • 2007
  • Hydrocarbons have been successfully used as a chemical marker in order to identify irradiated from non-irradiated foods. The method for determining hydrocarbons consists of extraction of fats, followed by separation of hydrocarbons by florisil column chromatography, and then identification of hydrocarbons by GC/MS. Currently, solvent extraction method for fats has certain limitations with regard to extraction time and solvent consumption. Commercial hams and sausage were irradiated at 0 and 5 kGy, and the efficiency of microwave-assisted extraction (MAE) and conventional solvent extraction (CSE) methods on the extraction of radiation-induced hydrocarbons from the meat products was compared. Significant levels of hydrocarbons, mainly composed of 1,7-hexadecadien, 1,7,10-hexadecatriene, and 6,9-heptadecadiene, were detected in the extracts from irradiated hams and sausages by both CSE and MAE methods. Both methods were acceptable in extracting hydrocarbons from samples, but MAE method required apparently reduced amounts of solvent from 150 (CSE) to 50 mL and reduced extraction time from 23 (CSE) to 5 min.

Detection of Radiation-Induced Hydrocarbons in Green, Black and Oolong Teas

  • Kausar, Tusneen;Lee, Jung-Eun;Noh, Jung-Eun;Kwon, Young-Ju;Kwon, Joong-Ho
    • Preventive Nutrition and Food Science
    • /
    • v.9 no.3
    • /
    • pp.222-226
    • /
    • 2004
  • Hydrocarbons induced by gamma-irradiation of green, black, and oolong teas were analyzed to determine whether the hydrocarbons can be used as markers for detecting post-irradiation of these teas. The samples were irradiated at 0, 2.5, 5, 7.5, and 10 kGy. Detection was attempted by extracting fat from the teas, separation of hydrocarbons with florisil column chromatography, and identification of hydrocarbons by gas chromatography-mass spectroscopy (GC-MS). Concentration of hydrocarbons increased with the irradiation dose. The major hydrocarbons in irradiated green, black, and oolong teas were 1-tetradecence (14:1), pentadecane (15:0), 1,7-hexadecadiene (16:2), 1-hexadecene (16:1), 8-heptadecene (17:1), and heptadecane (17:0). Radiation-induced hydrocarbons in teas were 1,7-hexadecadiene and 8-heptadecene. These compounds were not detected in non-irradiated samples, so the hydrocarbons (16:2, 17:1) can be used as markers for detecting post-irradiation of the teas. Furthermore, detection of hydrocarbons after 12 months storage at room temperature remains a suitable method for identifying irradiated teas.

Analysis of Radiolytically Proudced Hydrocarbons and 2-Alkylcyclobutanones from Irradiated Pinenut (방사선 조사된 잣으로부터 조사 여부를 확인하기 위한 Hydrocarbon류와 2-Alkylcyclobutanone류의 분석)

  • 이해정;김경수
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.30 no.1
    • /
    • pp.37-42
    • /
    • 2001
  • Pinenut was irradiated with the dose of 0.5∼10 kGy. Radiation-induced hydrocarbons and 2-alkylcyclobutanones were extracted from pinenut, separated by florisil column chromatography and identified with GC/MS method. Concentrations of hydrocarbons and 2-alkylcyclobutanones were increased with the increase of irradiation dose and the composition of patty acids in pinenut affected on products detects. The major hydrocarbons in irradiated pinenut were 8-heptadecene and 1,7-hexadecadiene originated ferom oleic acid and 6,9-heptadecadiene and 1, 7, 10-hexadecatriene originated from linoleic acid. 2-(5'-Tetradecenyl) cyclobutanone originated from oleic acid was highest in the irradiated pinenut. Radiation-induced hydrocarbons hydrocarbons and 2-alkylcyclobutanones in pinenut were detected at 0.5 kGy and over, but not detected in the unirradiated samples.

  • PDF

Analysis of Radiolytic Products of Lipid for the Detection of Irradiated Dried Cuttle Fish (Sepia officinalis) (건 갑오징어의 방사선 조사여부를 판별하기 위한 지방분해산물 분석)

  • Kim, Jun-Hyoung;Kim, Kyoung-Su
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.6
    • /
    • pp.1072-1078
    • /
    • 2003
  • Radiation-induced hydrocarbons and 2-alkylcycolbutanones are formed from the fatty acids of irradiated fat. These radiation-induced compunds were detected by fat extraction with a Soxtec apparatus from dried cuttle fish (Sepia officinalis), isolation of hydrocarbons and 2-alkylcyclobutanones with florisil column chromatography, and identification of GC/MS. Concentration of hydrocarbons produced by -λ-irradiation depended on the composition of fatty acid in dried cuttle fish. The major hydrocarbons in the irradiated dried cuttle fish samples were pentadecane and 1-tetradecene from palmitic acid, heptadecane and 1-hexadecene from stearic acid, and 8-heptadecen and 1,7-hexadecadiene from oleic acid. Of 2-alkylcyclobutanones, 2-dodecylcyclobutanone from palmitic acid was present at the highest level in irradiated dried cuttle fish. The radiation-induced hydrocarbons and 2-alkylcyclobutanones from the irradiated dried cuttle fish were detected at 0.5 kGy and over, but not detected in the non-irradiated fish.

Effect of Fat Substitute and Plum Extract on Radiation-induced Hydrocarbons and 2-Alkylcyclobutanones in Freeze-dried Beef Patties

  • Kwon, Joong-Ho;Lee, Eun-Joo;Kausar, Tusneem;Ahn, Dong-U.
    • Food Science of Animal Resources
    • /
    • v.31 no.6
    • /
    • pp.858-864
    • /
    • 2011
  • The effect of adding 10% fat substitute (10%F) or 2% plum extract (2%P) on the formation of hydrocarbons and 2-alkyl-cyclobutanones (2-ACBs) in freeze-dried beef patties, irradiated (IR) at 44 kGy, and freeze-dried irradiated cooked beef patties was investigated. Hydrocarbons, such as $C_{16:3}$, $C_{16:2}$, $C_{17:2}$ and $C_{17:1}$, were detected only in irradiated samples and their concentrations were high in the order of 2%P+IR, IR and 10%F+IR. Only irradiated beef samples produced 2-ACBs (2-DCB, 2-TCB, 2-TeCB), and their amounts were high in reverse order. The addition of fat substitute or plum extract did not help in reducing hydrocarbons and 2-ACBs in the freeze-dried irradiated cooked beef. However, the amounts of radiation-induced hydrocarbons and 2-ACBs in all irradiated beef patties even at 44 kGy were too small to be of concern for human consumption.

Comparison of Radiation-Induced Hydrocarbons in Dried Anchovies by Electron-Beam Irradiation (전자선 조사한 건조 멸치류에서 유도된 지방분해산물의 분석)

  • Hong, Young Shin;Kim, Kyong Su
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.12
    • /
    • pp.1889-1895
    • /
    • 2014
  • Radiation-induced hydrocarbon contents of dried anchovy, jiri anchovy, and large-eyed herring were evaluated following electron-beam irradiation at doses of 1, 3, 5, 7, and 10 kGy. GC/MS identification of the induced hydrocarbons by irradiation was conducted after lipid separation by soxtec, followed by florosil column chromatography. 1-Tetradecene ($C_{14:1}$) and pentadecane ($C_{15:0}$) derived from palmitic acid, 1-hexadecene ($C_{16:1}$) and heptadecane ($C_{17:0}$) from stearic acid, and 8-heptadecene ($C_{17:1}$) and 1,7-hexadecadiene ($C_{16:2}$) from oleic acid were the major induced hydrocarbons in irradiated dried anchovy, jiri anchovy, and large-eyed herring samples. At the same irradiation dose, concentration of induced hydrocarbons differed from fatty acid composition and increased in accordance with radiation dose level. Radiation-induced hydrocarbons, such as 1-tetradecene ($C_{14:1}$), 1-hexadecene ($C_{16:2}$), 8-heptadecene ($C_{17:1}$), and 1,7-hexadecadiene ($C_{16:2}$), were confirmed as irradiation marker compounds. Therefore, these marker compounds could be used to distinguish electron-beam irradiated dried anchovy, jiri anchovy, and large-eyed herring from non-irradiated ones.

Analysis of radiation induced hydrocarbons by electron-beam irradiation in dried squid (Todarodes pacificus) and octopus (Paroctopus dofleini) (전자선 조사한 건조된 오징어와 문어에서 유도된 지방분해산물의 분석)

  • Hong, Young Shin;Ryu, Keun Young;Kim, Kyong Su
    • Food Science and Preservation
    • /
    • v.21 no.3
    • /
    • pp.381-387
    • /
    • 2014
  • Food irradiation is one of the successful modern techniques used to preserve food. However, it needs very careful control. Detection of irradiated food is of prime importance to facilitate global trade and consumer assurance, choice, and protection. This study was performed to evaluate the radiation-induced hydrocarbon content of dried squid and octopus by e-beam irradiation. The samples were collected from supermarkets all over South Korea and irradiated with an e-beam at 0, 1, 3, 5, 7, and 10 kGy doses. Lipids were extracted with soxhelt, and the hydrocarbons induced with irradiation were separated via solid phase extraction (SPE) and identified via gas chromatography mass spectrometry (GC/MS). The major induced hydrocarbons in the irradiated dried squid and octopus were 1-tetradecene and pentadecane derived from palmitic acid and 1-hexadecene and heptadecane from stearic acid. The concentration of hydrocarbons differed from the composition of the fatty acid at the same radiation and increased according to the level of the radiation dose. The hydrocarbons induced by e-beam irradiation, including 1-tetradecene, 1-hexadecene, and heptadecane, were confirmed to have been the irradiation marker compounds. Therefore, they can be used to distinguish the e-beam-irradiated dried squid and octopus from the non-irradiated ones.

Detection Characteristics of Hydrocarbons from Irradiated Legumes of Korean and Chinese Origins (국산 및 중국산 두류의 감마선 조사에 따른 Hydrocarbon류의 검출 특성)

  • 이은영;김미옥;이해정;김경수;권중호
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.30 no.5
    • /
    • pp.770-776
    • /
    • 2001
  • To compare chemical properties of irradiated legumes (soybean, peanut, red bean, mung bean) produced in Korea and China, radiation-induced hydrocarbons from the samples were investigated. The legumes were gamma-irradiated at 0.5, 1, 2 and 4 kGy, from which lipid was extracted with hexane. Hydrocarbons were separated by florisil column chromatography and then analyzed with GC-MS method. The chromatograms of irradiated samples showed several radiation-induced hydrocarbons, which were affected by the fatty acid compositions of legumes. Hydrocarbons, such as 1, 7, 10-hexadecatriene (16:3),6,9-heptadecadiene (17 : 2), 1, 7-hexadecadiene (16 : 2) and 8-heptadecene (17 : 1), were predominantly detected in soybean, peanut and red bean irradiated at 0.5 kGy or above, whereas 17 : 1 was not found in mung bean. The detected amount of hydrocarbons increased with irradiation doses. There is no apparent difference in qualitative and quantitative profiles of the corresponding hydrocarbons depending on the origin of legumes.

  • PDF