• Title/Summary/Keyword: radiation-induced grafting

Search Result 35, Processing Time 0.021 seconds

The Preparation of a Thermally Responsive Surface by Ion Beam-induced Graft Polymerization

  • Jung, Chang-Hee;Kim, Wan-Joong;Jung, Chan-Hee;Hwang, In-Tae;Choi, Jae-Hak
    • Journal of Radiation Industry
    • /
    • v.6 no.4
    • /
    • pp.317-322
    • /
    • 2012
  • In this study, the preparation of a temperature-responsive poly(N-isopropylacrylamide) (PNIPAAm)-grafted surface was performed using an eco-friendly and biocompatible ion beam-induced surface graft polymerization. The surface of a perfluoroalkoxy (PFA) film was activated by ion implantation and N-isopropylacrylamide (NIPAAm) was then graft polymerized selectively onto the activated regions of the PFA surfaces. Based on the results of the peroxide concentration and grafting degree measurements, the amount of the peroxide groups formed on the implanted surface was dependant on the fluence, which affected the grafting degree. The results of the FT-IR-ATR, XPS, and SEM confirmed that the NIPAAm was successfully grafted onto the implanted PFA. Moreover, the contact angle measurement at different temperatures revealed that the surface of the PNIPAAm-grafted PFA film was temperature-responsive.

Preparation of Cement Composites Containing Kenaf Fiber Has Been Gamma-ray Grafted with Poly(ethylene glycol) Methacrylate (감마선 조사를 이용하여 Poly(ethylene glycol) Mathacrylate가 그래프팅된 케냐프 섬유를 포함하는 시멘트 복합재료의 제조)

  • Lee, Byoung-Min;Kang, Phil-Hyun;Jeun, Joon Pyo
    • Journal of Radiation Industry
    • /
    • v.8 no.1
    • /
    • pp.49-52
    • /
    • 2014
  • Kenaf fibers have excellent properties and possess the potential to be outstanding reinforcing fillers in cement. The grafting of poly(ethylene glycol) methacrylate (PEGMA) to the kenaf fibers is important in improving the compatibility between the fibers and the cement. PEGMA was grafted onto kenaf fibers using gamma-ray radiation. The radiation dose ranged from 20 to 60 kGy, and the dose rate was $10kGy\;h^{-1}$. The degree of grafting increased with increased radiation doses. FT-IR analysis revealed an increase in PEGMA content after gamma-ray radiation induced grafting, further evincing the attachment of PEGMA to the kenaf fibers. The mechanical properties of the gamma-ray grafted kenaf fiber/cement composites were superior to those of the ungrafted kenaf fiber/cement specimens.

Surface Functionalization of a Fluoropolymer by Ion Beam-induced Graft Polymerization of 4-Vinyl Pyridine

  • Jung, Chan-Hee;Hwang, In-Tae;Choi, Jae-Hak;Nho, Young-Chang
    • Journal of Radiation Industry
    • /
    • v.4 no.4
    • /
    • pp.341-345
    • /
    • 2010
  • The surface functionalization of a fluoropolymer by ion beam-induced graft polymerization was described in this research. The surface of poly(tetrafluoroethylene) (PTFE) films were irradiated by a 150 keV $H^+$ ions, and 4-vinyl pyridine (4VP) as a functional monomer was then thermally graft polymerized on the irradiated surface. The surface properties of poly(4-vinyl pyridine) (P4VP)-grafted PTFE films were investigated in terms of grafting degree, wettability, chemical structure, and morphology. The results revealed that the surface of PTFE films was successfully functionalized by ion beam-induced graft polymerization of 4VP.

Radiation-Induced Graft Copolymerization of Acrylic Acid onto Polyester

  • Chang, Hoon-Sean;Kong, Young-Kun;Lee, Chong-Kwang;Park, Jae-Ho
    • Nuclear Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.65-74
    • /
    • 1977
  • The radiation-induced graft polymerization of acrylic acid onto polyester fabric was investigated with accelerated electron beams as ratiation source at high dose rates. Homopolymerization was suppressed by addition of cations which is known as homopolymerization inhibitor, but this practical advantage was obtained at the expense of grafting efficiency. The rate of grafting (%/sec) was proportional to the 0.82th power of dose rates over the range from 1.6$\times$10$^{6}$ to 10$\times$10$^{6}$ rad/sec. The grafted polyester fabric showed considerable improvement in moisture regain and antistatic properties.

  • PDF

Radiation-Induced Grafting of Acrylic Acid onto Cellulose : II. Effects of Multi-Functional Monomer and Acid on the Grafting (셀룰로오스에 아크릴산의 방사선 그라프트 반응: II. 다관능성 단량체와 산의 첨가 효과)

  • Kwon, Oh Hyun;Nho, Young Chang;Lee, Young Moo
    • Applied Chemistry for Engineering
    • /
    • v.9 no.3
    • /
    • pp.348-354
    • /
    • 1998
  • Cellulose grafted with acrylic acid(AAc) was prepared by radiation grafting technique. The effects of reaction temperature. reaction time, monomer concentration, and the crosslinkers on the AAc grafting reaction on cellulose were examined. The amount of AAc grafted on the cellulose reached maximum at the concentration of 0.75vol% difunctional crosslinker and 1.0vol% trifunctional crosslinker, respectively. In the presence of acid, the amount of AAc grafted on the cellulose was decreased when reaction solution contains difunctional crosslinker, while that was increased when reaction solution contains trifunctional crosslinker. In the grafting reaction of cellulose with AAc and TMETA, mixture containing ferrous sulfate and acid enhanced further AAc grafting yield than mixture containing ferrous sulfate only.

  • PDF

Radiation-Induced Grafting of Acrylic Acid onto Cellulose : I. Graft Polymerization of Acrylic Acid onto Radiation-Peroxidized Cellulose (셀롤로오스에 아크릴산의 방사선 그라프트 반응: I. 과산화물에 의한 그라프트반응)

  • Kwon, Oh Hyun;Nho, Young Chang;Yang, Hyun Soo
    • Applied Chemistry for Engineering
    • /
    • v.8 no.6
    • /
    • pp.934-938
    • /
    • 1997
  • Acrylic acid was grafted onto the peroxidized cellulose which was stored at room temperature for 20 days after ${\gamma}$-ray irradiation in air. The effect of acids and metallic salts on the grafting yields was determined. The addition of both the acid and metallic salt was found to accelerate the grafting yield much more than the only metallic salt, and the addition of $FeSO_4{\cdot}7H_2O$ led to much higher grafting yield than that of $CuSO_4{\cdot}5H_2O$. The effect of acid on the grafting yield increased by the order $H_2>SO_4>HCl>HNO_3>CH_3COOH$. With the addition of $H_2SO_4$, the grafting yield rapidly increased up to $7{\times}10^{-2}$M, and then levelled off.

  • PDF

Radiation-Induced Graft Copolymerization of Methacrylic Acid and Methyl methacrylate onto Polyester.

  • Kang, Young-Kun;Chang, Hoon-Seun;Lee, Chong-Kwang;Park, Jae-Ho
    • Nuclear Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.195-201
    • /
    • 1978
  • The radiation-induced graft polymerization of methacrlic acid and methyl methacrylate onto a polyester fabric was investigated with ${\gamma}$-ray as the radiation source, and the rate of grafting was examined. When acrylic acid, methacrylic acid, and methyl methacrylate were grafted onto a polyester fabric, grafting efficiency was depened upon the dielectric constant of the solvent in the monomer mixture. The yield of the graft polymerization was related to the total dose, the concentration of the monomer, and the concentration of the swelling agent. The melting point and the glass transition temperature of MA and MMA grafted copolymers were analysed by means of DTA. Physical properties, such as the moisture regain, the antistatic property, and the wicking time were measured.

  • PDF

Hydrophilic Modification of Polypropylene Microfiltration Membrane by Radiation-Induced Graft Polymerization and Water Permeability (방사선 조사 그라프트중합에 의한 폴리프로필렌 정밀여과막의 친수화 및 물 투과특성)

  • Park, Jae-Hyung;Lee, Kune-Woo;Hwang, Taek-Sung;Lee, Jae-Won;Oh, Won-Jin
    • Applied Chemistry for Engineering
    • /
    • v.10 no.6
    • /
    • pp.954-959
    • /
    • 1999
  • Radiation-induced grafting of 2-hydroxyethyl methacrylate(HEMA), acrylic acid(AAc) and methacrylic acid(MAAc) onto polypropylene microfiltration membrane has been studied. The effect of grafting conditions such as solvent composition(MeOH and $H_2O$) and monomer concentration on the grafting yield in investigated. The highest degree of grafting is obtained at a solvent composition of 25% $H_2O$:75% MeOH for HEMA, pure water for AAc and 50% $H_2O$:50% MeOH for MAAc. Modification of the PP membranes with hydrophilic monomers is shown to cause an increase in the water permeation flux of the membranes. It is found that HEMA is the best monomer to increase the water permeation flux and the highest water permeation flux is obtained at 99% degree of grafting. The water permeation flux of AAc-grafted PP membrane and MAAc-grafted PP membrane is very sensitive to environmental pH and $Cu^{2+}$ ion, but the water permeation flux of HEMA-grafted PP membrane scarcely depends on pH and $Cu^{2+}$ ion.

  • PDF

Preparation of Modified Hollow Polypropylene Membrane and Their Adsorption Properties of ${\gamma}$-Globulins

  • Hwang, Taek-Sung;Park, Jin-Won
    • Macromolecular Research
    • /
    • v.11 no.5
    • /
    • pp.347-351
    • /
    • 2003
  • The hydrophobic ligand-containing hollow polypropylene (PP) membranes were synthesized by the mutual radiation induced graft copolymerization with glycidylmethacrylate (GMA) onto hollow PP membrane followed by the subsequent functionalization with L-phenylalanine. FT-IR, elemental analysis and UV spectroscopy were utilized to characterize copolymer composition, and degree of grafting, functionalization conversion and ${\gamma}$-globulins adsorption. The degree of grafting on the PP surface increased with the reaction time and total dose of E-beam. In the subsquent functionalization, the amount of L-phenylalanine increased with the increase in the degree of grafting and the degree of conversion was about 30%. The ${\gamma}$-globulins adsorption experiments showed that adsorption capacity had a maximum value at pH 8. The ${\gamma}$-globulins adsorption capacity in the basic pH region was higher than in the acidic pH region.