• Title/Summary/Keyword: radiation treatment planning

Search Result 629, Processing Time 0.03 seconds

USABILITY EVALUATION OF PLANNING MRI ACQUISITION WHEN CT/MRI FUSION OF COMPUTERIZED TREATMENT PLAN (전산화 치료계획의 CT/MRI 영상 융합 시 PLANNING MRI영상 획득의 유용성 평가)

  • Park, Do-Geun;Choe, Byeong-Gi;Kim, Jin-Man;Lee, Dong-Hun;Song, Gi-Won;Park, Yeong-Hwan
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.1
    • /
    • pp.127-135
    • /
    • 2014
  • Purpose : By taking advantage of each imaging modality, the use of fused CT/MRI image has increased in prostate cancer radiation therapy. However, fusion uncertainty may cause partial target miss or normal organ overdose. In order to complement such limitation, our hospital acquired MRI image (Planning MRI) by setting up patients with the same fixing tool and posture as CT simulation. This study aims to evaluate the usefulness of the Planning MRI through comparing and analyzing the diagnostic MRI image and Planning MRI image. Materials and Methods : This study targeted 10 patients who had been diagnosed with prostate cancer and prescribed nonhormone and definitive RT 70 Gy/28 fx from August 2011 to July 2013. Each patient had both CT and MRI simulations. The MRI images were acquired within one half hour after the CT simulation. The acquired CT/MRI images were fused primarily based on bony structure matching. This study measured the volume of prostate in the images of Planning MRI and diagnostic MRI. The diameters at the craniocaudal, anteroposterior and left-to-right directions from the center of prostate were measured in order to compare changes in the shape of prostate. Results : As a result of comparing the volume of prostate in the images of Planning MRI and diagnostic MRI, they were found to be $25.01cm^3$(range $15.84-34.75cm^3$) and $25.05cm^3$(range $15.28-35.88cm^3$) on average respectively. The diagnostic MRI had an increase of 0.12 % as compared with the Planning MRI. On the planning MRI, there was an increase in the volume by $7.46cm^3$(29 %) at the transition zone directions, and there was a decrease in the volume by $8.52cm^3$(34 %) in the peripheral zone direction. As a result of measuring the diameters at the craniocaudal, anteroposterior and left-to-right directions in the prostate, the Planning MRI was found to have on average 3.82cm, 2.38cm and 4.59cm respectively and the diagnostic MRI was found to have on average 3.37cm, 2.76cm and 4.51cm respectively. All three prostate diameters changed and the change was significant in the Planning MRI. On average, the anteroposterior prostate diameter decrease by 0.38cm(13 %). The mean right-to-left and craniocaudal diameter increased by 0.08cm(1.6 %) and 0.45cm(13 %), respectively. Conclusion : Based on the results of this study, it was found that the total volumes of prostate in the Planning MRI and the diagnostic MRI were not significantly different. However, there was a change in the shape and partial volume of prostate due to the insertion of prostate balloon tube to the rectum. Thus, if the Planning MRI images were used when conducting the fusion of CT/MRI images, it would be possible to include the target in the CTV without a loss as much as the increased volume in the transition zone. Also, it would be possible to reduce the radiation dose delivered to the rectum through separating more clearly the reduction of peripheral zone volume. Therefore, the author of this study believes that acquisition of Planning MRI image should be made to ensure target delineation and localization accuracy.

Application of Intensity Modulated Radiation Therapy (IMRT) in Prostate Cancer (전립선암에서 강도변조방사선치료 (Intensity Modulated Radiation Therapy)의 적용)

  • Park Suk Won;Oh Do Hoon;Bae Hoon Sik;Cho Byung Chul;Park Jae Hong;Han Seung Hee
    • Radiation Oncology Journal
    • /
    • v.20 no.1
    • /
    • pp.68-72
    • /
    • 2002
  • This study was done to implement intensity-modulated radiation therapy (IMRT) for the treatment of primary prostate cancer and to compare this technique with conventional treatment methods. A 72-year-old male patient with prostate cancer stage T2a was treated with IMRT delivered with dynamic multi-leaf collimation. Treatment was designed using an inverse planning algorithm, which accepts dose and dose-volume constraints for targets and normal structures. The IMRT plan was compared with a three-dimensional (3D) plan using the same 6 fields technique. Lower normal tissue doses and improved target coverage were achieved using IMRT at current dose levels, and facilitate dose escalation to further enhance locoregional control and organ movement during radiotherapy is an important issue of IMRT in prostate cancer.

The Effect of Therapy Oriented CT in Radiation Therapy Planning (치료 계획용 전산화 단층촬영이 방사선 치료계획에 미치는 효과)

  • Kim, Sung-Kyu;Shin, Sei-One;Kim, Myung-Se
    • Radiation Oncology Journal
    • /
    • v.5 no.2
    • /
    • pp.149-155
    • /
    • 1987
  • The success of radioation therapy depends on exact treatment of the tumor with significant high dose for maximizing local control and excluding the normal tissues for minimizing unwanted complications. To achieve these goals, correct estimation of target volume in three dimension, exact dose distribution in tumor and normal critical structures and correction of tissue inhomogeneity are required. The effect of therapy oriented CT (plannng CT) were compared with conventional simulation method in necessity of planning change, set dose, and proper distribution of tumor dose. Of 365 new patients examined, planning CT was performed in 104 patients $(28\%)$. Treatment planning was changed in $47\%$ of head and neck tumor, $79\%$ of intrathoracic tumor and $63\%$ of abdmonial tumor. in breast cancer and musculoskeletal tumors, planning CT was recommended for selection of adequate energy and calculation of exact dose to critical structures such as kidney or spinal cord. The average difference of tumor doses between CT planning and conventional simulation was $10\%$ in intrathoracic and intra-abdominal tumors but $20\%$ in head and neck tumors which suggested that tumor dose may be overestimated in conventional simulation Although some limitations and disadvantages including the cost and irradiation during CT are still criticizing, our study showed that CT Planning is very helpful in radiotherapy Planning.

  • PDF

Using CR System at the Department of Radiation Oncology PACS Evaluation (방사선 종양학과에서 CR System을 이용한 PACS 유용성 평가)

  • Hong, Seung-Il;Kim, Young-Jae
    • Journal of the Korean Society of Radiology
    • /
    • v.6 no.2
    • /
    • pp.143-149
    • /
    • 2012
  • Today each hospital is trend that change rapidly by up to date, digitization and introducing newest medical treatment equipment. So, we introduce new CR system and supplement film system's shortcoming and PACS, EMR, RTP system's network that is using in hospital harmoniously and accomplish quality improvement of medical treatment and service elevation about business efficiency enlargement and patient Accordingly, we wish to introduce our case that integrate reflex that happen with radiation oncology here upon to PACS using CR system and estimate the availability. We measured that is Gantry, Collimator Star Shot, Light vs. Radiation, HDR QA(Dwell position accuracy) with Medical LINAC(MEVATRON-MX) Then, PACS was implemented on the digital images on the monitor that can be confirmed through the QA. Also, for cooperation with OCS system that is using from present source and impose code that need in treatment in each treatment, did so that Order that connect to network, input to CR may appear, did so that can solve support data mistake (active Pinacle's case supports DICOM3 file from present source but PACS does not support DICOM3 files.) of Pinacle and PACS that is Planning System and look at Planning premier in PACS. All image and data constructed integration to PACS as can refer and conduct premier in Hospital anywhere using CR system. Use Dosimetry IP in Filmless environment and QA's trial such as Light/Radition field size correspondence, gantry rotation axis' accuracy, collimator rotation axis' accuracy, brachy therapy's Dwell position check is available. Business efficiency by decrease and so on of unnecessary human strength consumption was augmented accordingly with session shortening as that integrate premier that is neted with radiation oncology using CR system to PACS. and for the future patient information security is essential.

Monte Carlo Based Planning System for a Beam Spoiler

  • 강세권;조병철;박희철;배훈식
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2003.09a
    • /
    • pp.56-56
    • /
    • 2003
  • For the treatment of superficial tumors like squamous cell carcinoma of the head and neck, 6 MV photon beam is not appropriate and a spoiler is widely used to increase dose in the buildup region, while preserving the skin sparing effect. However, commercially available treatment planning systems assume a normal unspoiled beam, thereby cannot predict the buildup dose with spoiler accurately. We aimed to implement a Monte Carlo (MC) based planning system to apply it to the radiation treatment of head and neck. Lucite with thickness of 10-mm was used for the beam spoiler with Siemens Primus 6 MV photon beam. BEAM/DOSXYZ MC system was employed to model the linac and the spoiler. To verify the calculation accuracy of MC simulations, the percent depth doses (PDDs) and profiles with and without spoiler were measured using a parallel-plate chamber. For the MC based planning, we adopted a hybrid interface system between Pinnacle (Philips, USA) and BEAM/DOSXYZ to support treatment parameters of Siemens linac and the spoiler. The measurements of PDDs and profiles agreed with the corresponding MC simulations within 2% (lSD), which demonstrate the reliability of our MC simulations. The spoiler generated electrons make a contribution to the absorbed dose up to depth of 2cm, which shows that the dominant source of increased dose from spoiler system is the contaminating electrons created by the spoiler. The whole procedures necessary for MC based treatment planning were performed seamlessly between Pinnacle and BEAM/DOSXYZ system. This ability helps to increase the clinical efficiency of the spoiler technique. In conclusion, we implemented a MC based treatment planning system for a 6 MV photon beam with a spoiler. We demonstrate sophisticated MC technique makes it possible to predict dose distributions around buildup region accurately.

  • PDF

Study on dose comparison using X-Jaw split in VMAT treatment planning for left breast cancer including supraclavicular lymph nodes. (쇄골 상부 림프절을 포함하는 왼쪽 유방암의 VMAT 치료계획시 X-Jaw split을 이용한 선량비교에 관한 연구)

  • Kim, Hak Jun;Lee, Yang Hoon;Min, Jae Soon
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.33
    • /
    • pp.137-144
    • /
    • 2021
  • Purpose : The usability of X-Jaw split VMAT was evaluated by comparative analysis of the dose distribution between the treatment plan divided by X-Jaw and Full field VMAT treatment plan in left breast cancer treatment including supraclavicular lymph nodes. Materials and Methods : 10 patients with left breast cancer, including supraclavicular lymph nodes, were simulated using vacuum cushion, and 2 Full field Arc VMAT and 4 X-Jaw split Arc VMAT were planned The treatment plan was designed to include more than 95% of the Planning Target Volume (PTV) and to be minimally irradiated in the surrounding Organ at risk (OAR). Dose analysis of PTV and OAR was performed through dose volume histogram (DVH). Results : The Full field VMAT treatment plan and the X-Jaw split VMAT treatment plan of 10 patients were expressed as average values and compared. The difference between the two treatment plans was not large, with a Conformity index (CI) of 1.05±0.04, 1.04±0.03, and a Homogeneity index (HI) of 1.07±0.008, 1.07±0.009. For OAR, V5 in the left lung is 56.1±6.50%, 50.4±6.30%, and V20 is 20.0±4.15%, 13.52±3.61%. Compared to Full field VMAT, V5 decreased by 10.0% V20 by 32.6% in X-Jaw split VMAT. The V30 of the heart is 3.68±1.85%, 2.23±1.52%, and the Mean dose is 8.93±1.65 Gy, 7.67±1.52 Gy. In the X-Jaw split VMAT, V30 decreased by 39.3% and the Mean dose decreased by 14.1%. The left lung and heart, which are normal tissues, were found to have a statistical significance of that p-value is less than 0.05. Conclusion : In the case of left breast cancer treatment, which includes Supraclavicular lymph nodes with a large PTV volume and a length of X Jaw of 15 cm or more, the X-Jaw split VMAT shows improved dose distribution, which can reduce radiation dose of OAR such as lungs and heart, while maintaining similar PTV coverage with HI and CI equivalent to Full field VMAT. It is thought to be effective in reducing radiation complications.

Quantitative Evaluation of Setup Error for Whole Body Stereotactic Radiosurgery by Image Registration Technique

  • Kim, Young-Seok;Yi, Byong-Yong;Kim, Jong-Hoon;Ahn, Seung-Do;Lee, Sang-wook;Im, Ki-Chun;Park, Eun-Kyung
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.103-105
    • /
    • 2002
  • Whole body stereotactic radiosurgery (WBSRS) technique is believed to be useful for the metastatic lesions as well as relatively small primary tumors in the trunk. Unlike stereotactic radiosurgery to intracranial lesion, inherent limitation on immobilization of whole body makes it difficult to achieve the reliable setup reproducibility. For this reason, it is essential to develop an objective and quantitative method of evaluating setup error for WBSRS. An evaluation technique using image registration has been developed for this purpose. Point pair image registrations with WBSRS frame coordinates were performed between two sets of CT images acquired before each treatment. Positional displacements could be determined by means of volumetric planning target volume (PTV) comparison between the reference and the registered image sets. Twenty eight sets of CT images from 19 WBSRS patients treated in Asan Medical Center have been analyzed by this method for determination of setup random error of each treatment. It is objective and clinically useful to analyze setup error quantitatively by image registration technique with WBSRS frame coordinates.

  • PDF

A Comprehensive Computer Program for Monitor Unit Calculation and Beam Data Management: Independent Verification of Radiation Treatment Planning Systems (방사선치료계획시스템의 독립적 검증을 위한 선량 계산 및 빔데이터 관리 프로그램)

  • Kim, Hee-Jung;Park, Yang-Kyun;Park, Jong-Min;Choi, Chang-Heon;Kim, Jung-In;Lee, Sang-Won;Oh, Heon-Jin;Lim, Chun-Il;Kim, Il-Han;Ye, Sung-Joon
    • Progress in Medical Physics
    • /
    • v.19 no.4
    • /
    • pp.231-240
    • /
    • 2008
  • We developed a user-friendly program to independently verify monitor units (MUs) calculated by radiation treatment planning systems (RTPS), as well as to manage beam database in clinic. The off-axis factor, beam hardening effect, inhomogeneity correction, and the different depth correction were incorporated into the program algorithm to improve the accuracy in calculated MUs. A beam database in the program was supposed to use measured data from routine quality assurance (QA) processes for timely update. To enhance user's convenience, a graphic user interface (GUI) was developed by using Visual Basic for Application. In order to evaluate the accuracy of the program for various treatment conditions, the MU comparisons were made for 213 cases of phantom and for 108 cases of 17 patients treated by 3D conformal radiation therapy. The MUs calculated by the program and calculated by the RTPS showed a fair agreement within ${\pm}3%$ for the phantom and ${\pm}5%$ for the patient, except for the cases of extreme inhomogeneity. By using Visual Basic for Application and Microsoft Excel worksheet interface, the program can automatically generate beam data book for clinical reference and the comparison template for the beam data management. The program developed in this study can be used to verify the accuracy of RTPS for various treatment conditions and thus can be used as a tool of routine RTPS QA, as well as independent MU checks. In addition, its beam database management interface can update beam data periodically and thus can be used to monitor multiple beam databases efficiently.

  • PDF

The Feasibility Study on the Monte Carlo Based RTP Commissioning

  • Kang, Sei-Kwon;Cho, Byung-Chul;Park, Suk-Won;Oh, Do-Hoon;Park, Hee-Chul;Bae, Hoon-Sik
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2004.11a
    • /
    • pp.43-46
    • /
    • 2004
  • The commissioning of a treatment planning system of model-based dose calculation algorithm requires a lot of parameters to be selected to fit measured data, in which process physical insights for the parameters are often forgotten. We present the photon beam commissioning of Pinnacle$^3$ with the help of Monte Carlo (MC) simulation and evaluate the parameters Pinnacle$^3$ demands. Even though the MC calculation produces reasonable values for the commissioning, the thorough physical basis of the Pinnacles$^3$'s commissioning process is needed to use the MC derived parameters directly.

  • PDF

The Crucial Role of the Establishment of Computed Tomography Density Conversion Tables for Treating Brain or Head/Neck Tumors

  • Yang, Shu-Chin;Lo, Su-Hua;Shie, Li-Tsuen;Lee, Sung-Wei;Ho, Sheng-Yow
    • Progress in Medical Physics
    • /
    • v.32 no.3
    • /
    • pp.59-69
    • /
    • 2021
  • Purpose: The relationship between computed tomography (CT) number and electron density (ED) has been investigated in previous studies. However, the role of these measures for guiding cancer treatment remains unclear. Methods: The CT number was plotted against ED for different imaging protocols. The CT number was imported into ED tables for the Pinnacle treatment planning system (TPS) and was used to determine the effect on dose calculations. Conversion tables for radiation dose calculations were generated and subsequently monitored using a dosimeter to determine the effect of different CT scanning protocols and treatment sites. These tables were used to retrospectively recalculate the radiation therapy plans for 41 patients after an incorrect scanning protocol was inadvertently used. The gamma index was further used to assess the dose distribution, percentage dose difference (DD), and distance-to-agreement (DTA). Results: For densities <1.1 g/cm3, the standard deviation of the CT number was ±0.6% and the greatest variation was noted for brain protocol conditions. For densities >1.1 g/cm3, the standard deviation of the CT number was ±21.2% and the greatest variation occurred for the tube voltage and head and neck (H&N) protocol conditions. These findings suggest that the factors most affecting the CT number are the tube voltage and treatment site (brain and H&N). Gamma index analyses for the 41 retrospective clinical cases, as well as brain metastases and H&N tumors, showed gamma passing rates >90% and <90% for the passing criterion of 2%/2 and 1%/1 mm, respectively. Conclusions: The CT protocol should be carefully decided for TPS. The correct protocol should be used for the corresponding TPS based on the treatment site because this especially affects the dose distribution for brain metastases and H&N tumor recognition. Such steps could help reduce systematic errors.