• Title/Summary/Keyword: radiation sources

Search Result 585, Processing Time 0.029 seconds

INFORMATION SYSTEM ON INTEGRATED RADIATION SAFETY (ISIRS) AND ORPHAN SOURCES CONTROL IN KOREA

  • Lee, Dewhey
    • Journal of Radiation Protection and Research
    • /
    • v.26 no.3
    • /
    • pp.255-263
    • /
    • 2001
  • An Orphan Sources Control program controlled by a web based information system in Korea has been developed to satisfy the national demand on a total management of and integrated radiation safety. There are, currently, three approaches going on to control and manage the orphan sources in Korea. First, Korean regulatory authority has been conducting scrutinizing investigation on and thoroughly monitoring the possession of unlicensed radioactive sources from the late 1990s. Second, the regulatory authority will fully operate an information system on radiation safety to effectively trace and monitor all radioactive sources in the country by the mid 2001. Finally, the regulatory authority strongly advises steel mill companies to closely scrutinize and inspect the scrap metals when they attempt to reutilize metals to prevent from being contaminated by uncontrolled sources through the scrap monitoring systems.

  • PDF

Autonomous exploration for radioactive sources localization based on radiation field reconstruction

  • Xulin Hu;Junling Wang;Jianwen Huo;Ying Zhou;Yunlei Guo;Li Hu
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1153-1164
    • /
    • 2024
  • In recent years, unmanned ground vehicles (UGVs) have been used to search for lost or stolen radioactive sources to avoid radiation exposure for operators. To achieve autonomous localization of radioactive sources, the UGVs must have the ability to automatically determine the next radiation measurement location instead of following a predefined path. Also, the radiation field of radioactive sources has to be reconstructed or inverted utilizing discrete measurements to obtain the radiation intensity distribution in the area of interest. In this study, we propose an effective source localization framework and method, in which UGVs are able to autonomously explore in the radiation area to determine the location of radioactive sources through an iterative process: path planning, radiation field reconstruction and estimation of source location. In the search process, the next radiation measurement point of the UGVs is fully predicted by the design path planning algorithm. After obtaining the measurement points and their radiation measurements, the radiation field of radioactive sources is reconstructed by the Gaussian process regression (GPR) model based on machine learning method. Based on the reconstructed radiation field, the locations of radioactive sources can be determined by the peak analysis method. The proposed method is verified through extensive simulation experiments, and the real source localization experiment on a Cs-137 point source shows that the proposed method can accurately locate the radioactive source with an error of approximately 0.30 m. The experimental results reveal the important practicality of our proposed method for source autonomous localization tasks.

Exposure of the Population in the United States to Ionizing Radiation

  • Carter Melvin W.;Oliver Robert W.
    • Journal of Radiation Protection and Research
    • /
    • v.12 no.2
    • /
    • pp.37-50
    • /
    • 1987
  • The exposure of the population in the United States to ionizing radiation has recently been evaluated by the National Council on Radiation Protection and Measurements (NCRP). This was done by constituting six organizational groups to address various phases of the work and the results of this work are summarized in this article. The article is based on the report, by the same title, which is scheduled for publication by the NCRP in September, 1987. The six organizational groups are titled Radiation Exposure from Consumer Products, Natural Background Radiation, Radiation Associated with Medical Examinations, Radiation Received by Radiation Employees, Public Exposure from Nuclear Power, and Exposure from Miscellaneous Environmental Sources. These titles are descriptive of the subject areas covered by each of these separate groups. The data evaluated are for the years 1977-1984 with the majority of the data being for the period 1980-1982. Summary information is presented and discussed for the number of people exposed to given sources, the effective dose equivalent, the average effective dose equivalent to the U.S. population, and the genetically significant dose equivalent. The average annual effective dose equivalent from all sources to the U.S. population is approximately 3.6 mSv (360 mrem). Exposures to natural sources make the largest contribution to this total. Radon and radon decay products contribute 2.0 mSv (200 mrem) whereas the other naturally occurring radionuclides contribute 1.0 mSv (100 mrem). Among man-made or enhanced sources, medical exposures make the largest additional contributions, namely 0.39 mSv (39 mrem) for diagnosis and 0.14 mSv (14 mrem) for nuclear medicine. It was not possible to evaluate exposures for therapy. Most of the other sources of population exposure, including nuclear power and consumer products, are minor. A possible exception would be the use of tobacco products. These exposures are discussed in relation to a negligible individual risk level of $10{\mu}Sv/y$ (1 mrem/y). The NCRP considers exposures below the negligible individual risk level as trivial and as such should be dismissed.

  • PDF

AN EVALUATION OF RADIATION DOSES RESULTING FROM THE MEDICAL USE OF HIGH-ENERGY BETA-RAY SOURCES

  • Park, Jae-Woo;Kim, Hyun-Jo
    • Journal of Radiation Protection and Research
    • /
    • v.26 no.3
    • /
    • pp.149-154
    • /
    • 2001
  • Calculational models to evaluate radiation doses resulting from the medical use of high energy beta-ray sources are presented. The radioactive sources considered are Sr-90/Y-90 used as ophthalmic applicator, Re-188 used for treating restenosis of coronary artery, and Ho-166 used for treating hepatic tumors. Typical therapeutic situations which might induce relatively high radiation doses the medical person involved were considered to compute by using MCNP-4C Monte Carlo code the radiation doses. The calculation results suggest that for all of the cases considered, the evaluated radiation doses are negligible compared to the dose limits. It is also found that the effect of Bremsstrahlung radiations on the total dose is insignificant, and hence the conventional lead gown is also effective in shielding beta-rays.

  • PDF

Development of Radiation Dose Assessment Algorithm for Arbitrary Geometry Radiation Source Based on Point-kernel Method (Point-kernel 방법론 기반 임의 형태 방사선원에 대한 외부피폭 방사선량 평가 알고리즘 개발)

  • Ju Young Kim;Min Seong Kim;Ji Woo Kim;Kwang Pyo Kim
    • Journal of Radiation Industry
    • /
    • v.17 no.3
    • /
    • pp.275-282
    • /
    • 2023
  • Workers in nuclear power plants are likely to be exposed to radiation from various geometrical sources. In order to evaluate the exposure level, the point-kernel method can be utilized. In order to perform a dose assessment based on this method, the radiation source should be divided into point sources, and the number of divisions should be set by the evaluator. However, for the general public, there may be difficulties in selecting the appropriate number of divisions and performing an evaluation. Therefore, the purpose of this study is to develop an algorithm for dose assessment for arbitrary shaped sources based on the point-kernel method. For this purpose, the point-kernel method was analyzed and the main factors for the dose assessment were selected. Subsequently, based on the analyzed methodology, a dose assessment algorithm for arbitrary shaped sources was developed. Lastly, the developed algorithm was verified using Microshield. The dose assessment procedure of the developed algorithm consisted of 1) boundary space setting step, 2) source grid division step, 3) the set of point sources generation step, and 4) dose assessment step. In the boundary space setting step, the boundaries of the space occupied by the sources are set. In the grid division step, the boundary space is divided into several grids. In the set of point sources generation step, the coordinates of the point sources are set by considering the proportion of sources occupying each grid. Finally, in the dose assessment step, the results of the dose assessments for each point source are summed up to derive the dose rate. In order to verify the developed algorithm, the exposure scenario was established based on the standard exposure scenario presented by the American National Standards Institute. The results of the evaluation with the developed algorithm and Microshield were compare. The results of the evaluation with the developed algorithm showed a range of 1.99×10-1~9.74×10-1 μSv hr-1, depending on the distance and the error between the results of the developed algorithm and Microshield was about 0.48~6.93%. The error was attributed to the difference in the number of point sources and point source distribution between the developed algorithm and the Microshield. The results of this study can be utilized for external exposure radiation dose assessments based on the point-kernel method.

Comparison of Three Radiation Sources on Quality Properties of Three Dried Condiments (건조 향신료 3종에 대한 방사선종별 조사효과 비교)

  • Park, Kyung-Sook
    • Journal of Radiation Industry
    • /
    • v.8 no.2
    • /
    • pp.83-88
    • /
    • 2014
  • Application of X-ray irradiation of dried condiments was studied using commercially prepared dried garlic, onion and welsh onion flakes as model samples. Total load of aerobic microbes (TAM), color differences, and generation of off-flavor were quantified for samples individually irradiated with gamma rays, electrons, or X-rays. TAM load was decreased by irradiation in a dose-dependent manner. The three types of radiation did not differ in the extent of TAM reduction (P>0.05). The samples did not differ in color. Off-flavor was detected from 6 kGy-irradiated samples, regardless of radiation sources. The results indicated that X-ray irradiation could be used for irradiation of dried condiments with the same effects as gamma rays and an electron beam.

Standard Neutron Irradiation Facility for Calibration of Radiation Protection Instruments by Radioactive Neutron Sources (방사성 중성자선원에 의한 방사선방어측정기의 교정을 위한 표준 중성자 조사장치 연구)

  • Choi, Kil-Oung;Lee, Kyung-Ju;Hwang, Sun-Tae
    • Journal of Radiation Protection and Research
    • /
    • v.14 no.1
    • /
    • pp.66-70
    • /
    • 1989
  • In routine testing, the radioactive neutron sources are particularly suitable for producing standard. neutron fields. The ISO TC-85 has proposed neutron reference radiation for the calibration of neutron measuring devices used for radiation protection purposes. Radiation laboratory of KSRI has installed a standard irradiation facility using $^{252}Cf$ and $^{241}Am-Be$ sources for calibrating personal dosimeters according to the recommendations given in ISO TC-85. In this study, correction factors for calibration related to neutron scattering and anisotropy are obtained by experiments with commercial rem meter for demonstration purposes.

  • PDF

Comparison of the effects of gamma ray, electron beam, and X-ray irradiation to improve safety of black pepper powder (후춧가루의 위생화를 위한 감마선, 전자선 및 X-선 조사 효과 비교)

  • Park, Jae-Nam;Jung, Koo;Yoon, Young-Min;Choi, Soo-Jeong;Kim, Jae-Hun;Lee, Ju-Woon;Song, Beom-Seok
    • Food Science and Preservation
    • /
    • v.21 no.3
    • /
    • pp.315-320
    • /
    • 2014
  • This study evaluated the effects of a gamma ray (GR), electron beam (EB), and X-ray (XR) to improve the safety of black pepper powder. The black pepper powder was irradiated by GR, EB, and XR at 2, 4, 6, 8, and 10 kGy. The results of the total bacterial populations in the black pepper power sample showed a similar effect on microbial decontamination for radiation sources. Radiation sensitivity ($D_{10}$ value) on the initial bacteria loads in the sample was 2.24 kGy in GR, 2.37 kGy in EB, and 2.75 kGy in XR. In addition, there were no differences among the radiation sources. The color values, such as L (lightness), a (redness), and b (yellowness), were not changed significantly. The sensory characteristics of GR, EB, and XR irradiated black pepper powder were decreased when the radiation dose increased, but there was no significant changes among the radiation sources. The results can be applied to investigate the effects of radiation sources on the microbiological and sensory characteristics of black pepper powder.

Improvement of Cellulolytic Activity of Pleurotus florida through Radiation Mutagenesis

  • Sathesh-Prabu, Chandran;Lee, Young-Keun
    • Journal of Radiation Industry
    • /
    • v.6 no.2
    • /
    • pp.181-188
    • /
    • 2012
  • A mushroom mutant with increased cellulolytic activity was developed through radiation mutagenesis. The homogenized hypha suspension of Pleurotus florida was exposed to gamma radiation ($^{60}Co$, AECL) at the dose of $LD_{99}$ (0.51 kGy, $D_{10}$; 0.26 kGy). Among 16 mutants, Pf CM4 showed 17.24% more cellulolytic activity than the wild type (p<0.05). It was observed that Pf CM4 can utilize all kinds of carbon sources tested for their mycelia growth. Starch, xylan, and glucose favourably supported the radial mycelia extension. Yeast extract and $NH_4NO_3$ have been recorded as the best organic and inorganic nitrogen sources, respectively. Pf CM4 was found to grow significantly faster, even at high temperature ($30^{\circ}C$), than wild type (p<0.05), and the optimal pH was 5.5~6.5. This study reveals that the mutant Pf CM4 could be employed for the effective recycling of cellulosic wastes, in addition to mushroom farming.

Development of an efficient method of radiation characteristic analysis using a portable simultaneous measurement system for neutron and gamma-ray

  • Jin, Dong-Sik;Hong, Yong-Ho;Kim, Hui-Gyeong;Kwak, Sang-Soo;Lee, Jae-Geun;Jung, Young-Suk
    • Analytical Science and Technology
    • /
    • v.35 no.2
    • /
    • pp.69-81
    • /
    • 2022
  • The method of measuring and classifying the energy category of neutrons directly using raw data acquired through a CZT detector is not satisfactory, in terms of accuracy and efficiency, because of its poor energy resolution and low measurement efficiency. Moreover, this method of measuring and analyzing the characteristics of low-energy or low-activity gamma-ray sources might be not accurate and efficient in the case of neutrons because of various factors, such as the noise of the CZT detector itself and the influence of environmental radiation. We have therefore developed an efficient method of analyzing radiation characteristics using a neutron and gamma-ray analysis algorithm for the rapid and clear identification of the type, energy, and radioactivity of gamma-ray sources as well as the detection and classification of the energy category (fast or thermal neutrons) of neutron sources, employing raw data acquired through a CZT detector. The neutron analysis algorithm is based on the fact that in the energy-spectrum channel of 558.6 keV emitted in the nuclear reaction 113Cd + 1n → 114Cd + in the CZT detector, there is a notable difference in detection information between a CZT detector without a PE modulator and a CZT detector with a PE modulator, but there is no significant difference between the two detectors in other energy-spectrum channels. In addition, the gamma-ray analysis algorithm uses the difference in the detection information of the CZT detector between the unique characteristic energy-spectrum channel of a gamma-ray source and other channels. This efficient method of analyzing radiation characteristics is expected to be useful for the rapid radiation detection and accurate information collection on radiation sources, which are required to minimize radiation damage and manage accidents in national disaster situations, such as large-scale radioactivity leak accidents at nuclear power plants or nuclear material handling facilities.