• Title/Summary/Keyword: radiation sensor

Search Result 427, Processing Time 0.022 seconds

Measurement of radiation using photo diodes (Photo diode에 의한 일사량 측정(관개배수 \circled2))

  • 이남호;김기복;백성호
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.200-205
    • /
    • 2000
  • The purpose of this study is to develop an economical radiation sensor using photo diodes. An electronic circuit was developed. The behavior of the radiation sensor was evaluated by increasing number of photo diodes. The sensor became more reliable by the increase in number of photo diodes. It was showed that the photo diodes sensor would be applicable.

  • PDF

Self-Radiation Impedance of rectangular Acoustic Sensor Without Baffle (배플이 없는 사각형 음향센서의 자기방사 임피던스)

  • Lee, Jong-Kil;Seo, In-Chang
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.82-88
    • /
    • 1995
  • Conductance and susceptance of the self-radiation impedance in a rectangular acoustic sensor without baffle are measured experimentally. Finite polyurethane window is mounted at the end of the acoustic sensor. The sensor radiation impedance is cauculated using the equivalent electric circuit. Using the Levine's integral equations of a rectangular piston mounted to the rigid infinite baffle, radiation resistance and reactance were simulated numerically. Numerical and experimental results are compared to each other.

  • PDF

Implementation of Large Area CMOS Image Sensor Module using the Precision Align Inspection (정밀 정렬 검사를 이용한 대면적 CMOS 이미지 센서 모듈 구현)

  • Kim, Byoungwook;Kim, Youngju;Ryu, Cheolwoo;Kim, Jinsoo;Lee, Kyungyong;Kim, Myungsoo;Cho, Gyuseong
    • Journal of Radiation Industry
    • /
    • v.8 no.3
    • /
    • pp.147-153
    • /
    • 2014
  • This paper describes a large area CMOS image sensor module Implementation using the precision align inspection program. This work is needed because wafer cutting system does not always have high precision. The program check more than 8 point of sensor edges and align sensors with moving table. The size of a $2{\times}1$ butted CMOS image sensor module which except for the size of PCB is $170mm{\times}170mm$. And the pixel size is $55{\mu}m{\times}55{\mu}m$ and the number of pixels is $3,072{\times}3,072$. The gap between the two CMOS image sensor module was arranged in less than one pixel size.

Performance Evaluation of a Fiber-Optic Cerenkov Radiation Sensor System Using a Simulated Spent Fuel Assembly (사용후핵연료 집합체 모사장치를 이용한 광섬유 체렌코프 방사선 센서 시스템의 성능평가)

  • Shin, Sang Hun;Yoo, Wook Jae;Jang, Kyoung Won;Cho, Seunghyun;Park, Byung Gi;Lee, Bongsoo
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.245-250
    • /
    • 2014
  • When the charged particle travels in transparent medium with a velocity greater than that of light in the same medium, the electromagnetic field close to the particle polarizes the medium along its path, and then the electrons in the atoms follow the waveform of the pulse which is called as Cerenkov light or radiation. This type of radiation can be easily observed in a spent fuel storage pit. In optical fibers, the Cerenkov light also can be generated due to their dielectric components. Accordingly, the radiation-induced light signals can be obtained using optical fibers without any scintillating material. In this study, to measure the intensities of Cerenkov radiation induced by gamma-rays, we have fabricated the fiber-optic Cerenkov radiation sensor system using silica optical fibers, plastic optical fibers, multi-anode photomultiplier tubes, simulated spent fuel assembly and a scanning system. To characterize the Cerenkov radiation generated in optical fibers, the intensities of Cerenkov radiation generated in the silica and plastic optical fibers were measured. Also, we measured the longitudinal distribution of gamma rays emitted from the Ir-192 isotope by using the fiber-optic Cerenkov radiation sensor system and simulated spent fuel assembly.

Characteristic Evaluation of Pressure Mapping System for Patient Position Monitoring in Radiation Therapy

  • Kang, Seonghee;Choi, Chang Heon;Park, Jong Min;Chung, Jin-Beom;Eom, Keun-Yong;Kim, Jung-in
    • Progress in Medical Physics
    • /
    • v.32 no.4
    • /
    • pp.153-158
    • /
    • 2021
  • Purpose: This study evaluated the features of a pressure mapping system for patient motion monitoring in radiation therapy. Methods: The pressure mapping system includes an MS 9802 force sensing resistor (FSR) sensor with 2,304 force sensing nodes using 48 columns and 48 rows, controller, and control PC (personal computer). Radiation beam attenuation caused by pressure mapping sensor and signal perturbation by 6 and 10 mega voltage (MV) photon beam was evaluated. The maximum relative pressure value (mRPV), average relative pressure value (aRPV), the center of pressure (COP), and area of pressure distribution were obtained with/without radiation using the upper body of an anthropomorphic phantom for 30 minutes with 15 MV. Results: It was confirmed that the differences in attenuation induced by the FSR sensor for 6 and 10 MV photon beams were small. The differences in mRPV, aRPV, area of pressure distribution with/without radiation are about 0.6%, 1.2%, and 0.5%, respectively. The COP values with/without radiation were also similar. Conclusions: The characteristics of a pressure mapping system during radiation treatment were evaluated on the basis of attenuation and signal perturbation using radiation. The pressure distribution measured using the FSR sensor with little attenuation and signal perturbation by the MV photon beam would be helpful for patient motion monitoring.

Development of Mixed Sensor Parts for Integrated Radiation Exposure Protection Fireman's Life-saving Alarm (일체형 방사선 피폭 방호 소방관 인명구조 경보기의 혼합형 센서부 개발)

  • Kim, Jae-Hyeong;Lee, Joo-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1457-1460
    • /
    • 2019
  • In this paper, we proposed the development of a mixed sensor parts for integrated radiation exposure protection fireman's life-saving alarm that can be location-tracked and irradiated. To measure radiation exposure dose, we use the PIN-Diode radiation measurement sensor module, a semi-conductive radiation measurement sensor that can minimize size and weight. The design for removing leakage current is carried out to enhance the characteristics of the radiation measurement sensor using PIN-Diode. The IMU sensor module is used to estimate the location of the current fireman at the same time as the accident estimate by adding together the data and the values for acceleration on the three axis. Experiments were conductied by an authorized testing agency to determine the efficiency of the proposed mixed sensor parts for integrated radiation exposure protection fireman's life-saving alarms. The cumulative dose measurement range was measured in the range of 10 μSv to 10 mSv, the highest level in the world. The accuracy was measured from ±6.3% to ±9.0% (137 Cs) and normal operation was found at the international standard of ±15%. In addition, positional accuracy was measured within ±10%, resulting in a high level of results, demonstrating its effectiveness. Therefore, it is expected that more firemen will be able to provide with superior performance integrated radiation exposure protection fireman life-saving alarm.

Feasibility Study of Phosphor Particle Blended Hybrid Dosimeter for Quality Assurance in Radiation Therapy (Phosphor Particle 혼합형 Hybrid 선량계의 방사선치료 Quality Assurance에 대한 적용가능성 평가)

  • Shin, Yohan;Han, Moojae;Jung, Jaehoon;Cho, Heunglae;Park, Sungkwang
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.3
    • /
    • pp.333-338
    • /
    • 2019
  • In the field of radiotherapy, the Quality Assurance(QA) procedure to verify the safety of treatment is considered to be very important. However, due to various problems of the conventional dosimeters used for the QA, researches on these dosimeters have been actively carried out to replace them. In this study, to maximize the sensitivity by visible light(VL) emitted from phosphors, blended hybrid sensors were fabricated by blending various weight percent(wt%) of $Gd_2O_2S:Tb$ which is a phosphor with excellent fluorescence efficiency into $PbI_2$. Then, the electrical properties to high energy radiation from the blended sensors and the pure $PbI_2$ sensor were compared and evaluated. As a result of the sensitivity evaluation, the sensor of 3wt% showed the highest value with more than 40% difference from the other sensors, and gradual decreasing in sensitivity was observed with increasing wt% except for the sensor of 3wt%. Also, in the reproducibility evaluation, the pure $PbI_2$ sensor exhibited a large variation in coefficient of variation(CV)>0.015, while all the blended sensors showed CV<0.015.

Preliminary Research of CZT Based PET System Development in KAERI

  • Jo, Woo Jin;Jeong, Manhee;Kim, Han Soo;Kim, Sang Yeol;Ha, Jang Ho
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.2
    • /
    • pp.81-86
    • /
    • 2016
  • Background: For positron emission tomography (PET) application, cadmium zinc telluride (CZT) has been investigated by several institutes to replace detectors from a conventional system using photomultipliers or Silicon-photomultipliers (SiPMs). The spatial and energy resolution in using CZT can be superior to current scintillator-based state-of-the-art PET detectors. CZT has been under development for several years at the Korea Atomic Energy Research Institute (KAERI) to provide a high performance gamma ray detection, which needs a single crystallinity, a good uniformity, a high stopping power, and a wide band gap. Materials and Methods: Before applying our own grown CZT detectors in the prototype PET system, we investigated preliminary research with a developed discrete type data acquisition (DAQ) system for coincident events at 128 anode pixels and two common cathodes of two CZT detectors from Redlen. Each detector has a $19.4{\times}19.4{\times}6mm^3$ volume size with a 2.2 mm anode pixel pitch. Discrete amplifiers consist of a preamplifier with a gain of $8mV{\cdot}fC^{-1}$ and noise of 55 equivalent noise charge (ENC), a $CR-RC^4$ shaping amplifier with a $5{\mu}s$ peak time, and an analog-to-digital converter (ADC) driver. The DAQ system has 65 mega-sample per second flash ADC, a self and external trigger, and a USB 3.0 interface. Results and Discussion: Characteristics such as the current-to-voltage curve, energy resolution, and electron mobility life-time products for CZT detectors are investigated. In addition, preliminary results of gamma ray imaging using 511 keV of a $^{22}Na$ gamma ray source were obtained. Conclusion: In this study, the DAQ system with a CZT radiation sensor was successfully developed and a PET image was acquired by two sets of the developed DAQ system.

Fabrication and performance evaluation of one-dimensional fiber-optic radiation sensor for X-ray profile irradiated by clinical linear accelerator (의료용 선형가속기의 X-선 분포도 측정을 위한 1차원 광섬유 방사선 센서의 제작 및 성능평가)

  • Cho, Dong-Hyun;Jang, Kyoung-Won;Yoo, Wook-Jae;Lee, Bong-Soo;Cho, Hyo-Sung;Kim, Sin
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.33-38
    • /
    • 2007
  • In this study, one-dimensional fiber-optic radiation sensor with an organic scintillator tip is fabricated to measure high energy X-ray beam profile of CLINAC. According to the energy and field size of X-ray, scintillating light signal from one-dimensional fiber-optic sensor is measured using a photodiode-amplifier system. This sensor has many advantages such as high resolution, real-time measurement and ease calibration over conventional ion chamber and film.

A Study on Display Data of Radiation Point at 3 Dimensions (3차원 공간상 방사선원 위치 정보 표현에 관한 연구)

  • Lee, Seung-Min;Lee, Heung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.6
    • /
    • pp.1130-1132
    • /
    • 2007
  • In this research, 3D position exploring system was developed to detect direction and position of radiation source by using two general CCD camera. This system consists of a radiation detection device, a controlling device, and a monitoring device. A radiation detection device is composed of a collimator, a scintillator, CCD sensor, and radiation shielding part. Incident radiation is firstly collimated with direction and converted into visual lights in a scintillator. The CCD sensor detect the converted visual light and send a signal as an image. This can explore a radiation source with direction and distance from geometrical structure of two sensors. From these information, the developed 3D position exploring system can provide 3D radiation source information. This research will be useful for managing and processing radioactive materials in remote.