• Title/Summary/Keyword: radiation exposure dose

Search Result 1,082, Processing Time 0.03 seconds

Intent to Use a Smartphone Application for Radiation Monitoring in Correlation with Anxiety about Exposure to Radiation, Recognition of Risks, and Attitudes toward the Use of Radiation

  • Han, Eunkyoung;Rott, Carsten;Hong, Seung-Woo
    • Journal of Radiation Protection and Research
    • /
    • v.42 no.4
    • /
    • pp.205-211
    • /
    • 2017
  • Background: Radiation is used in a variety of areas, but it also poses potential risks. Although radiation is often used with great effectiveness in many applications, people perceive potential risks associated with radiation and feel anxious about the possibility of radiation exposure. Various methods of measuring radiation doses have been developed, but there is no way for the general public to measure their doses with ease. Currently, many people use smartphones, which provide information about the location of an individual phone through network connections. If a smartphone application could be developed for measuring radiation dosage, it would be a very effective way to measure individuals' radiation doses. Thus, we conducted a survey study to assess the social acceptance of such a technology by the general public and their intent to use that technology to measure radiation doses, as well as to investigate whether such an intention is correlated with anxiety and attitudes toward the use of radiation. Materials and Methods: A nationwide online survey was conducted among 355 Koreans who were 20 years old or older. Results and Discussion: Significant differences were found between the genders in attitudes, perceptions of radiation risk, and fears of exposure to radiation. However, a significant difference according to age was observed only in the intent to use a smartphone dose measurement application. Attitudes towards the use of radiation exerted a negative effect on radiation risk perception and exposure anxiety, whereas attitudes towards the use of radiation, risk perception, and anxiety about exposure were found to have a positive impact on the intent to use a smartphone application for dose measurements. Conclusion: A survey-based study was conducted to investigate how the general public perceives radiation and to examine the acceptability of a smartphone application as a personal dose monitoring device. If such an application is developed, it could be used not only to monitor an individual's dose, but also to contribute to radiation safety information infrastructure by mapping radiation in different areas, which could be utilized as a useful basis for radiation research.

Organ dose reconstruction for the radiation epidemiological study of Korean radiation workers: The first dose evaluation for the Korean Radiation Worker Study (KRWS)

  • Tae-Eun Kwon;Areum Jeong;Wi-Ho Ha;Dalnim Lee;Songwon Seo;Junik Cho;Euidam Kim;Yoonsun Chung;Sunhoo Park
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.725-733
    • /
    • 2023
  • The Korea Institute of Radiological and Medical Sciences has started a radiation epidemiological study, titled "Korean Radiation Worker Study," to evaluate the health effects of occupational exposure to radiation. As a part of this study, we investigated the methodologies and results of reconstructing organ-specific absorbed doses based on personal dose equivalent, Hp(10), reported from 1984 to 2019 for 20,605 Korean radiation workers. For the organ dose reconstruction, representative exposure scenarios (i.e., radiation energy and exposure geometry) were first determined according to occupational groups, and dose coefficients for converting Hp(10) to organ absorbed doses were then appropriately taken based on the exposure scenarios. Individual annual doses and individual cumulative doses were reconstructed for 27 organs, and the highest values were observed in the thyroid doses (on average 0.77 mGy/y and 10.47 mGy, respectively). Mean values of individual cumulative absorbed doses for the red bone marrow, colon, and lungs were 7.83, 8.78, and 8.43 mSv, respectively. Most of the organ doses were maximum for industrial radiographers, followed by nuclear power plant workers, medical workers, and other facility workers. The organ dose database established in this study will be utilized for organ-specific risk estimation in the Korean Radiation Worker Study.

Buildup Characteristics of Radiophotoluminescent Glass Dosimeters with Exposure Time of X-ray (엑스선의 조사시간에 따른 형광유리선량계의 빌드업 특성)

  • Kweon, Dae Cheol
    • Journal of Biomedical Engineering Research
    • /
    • v.38 no.5
    • /
    • pp.256-263
    • /
    • 2017
  • By using the buildup characteristics of the radiophotoluminescence glass dosimeter(RPLGD), it is aimed to help the measurement of the accurate dose by measuring the radiation dose according to the time of the glass element. Five glass elements were arranged on the table and the source to image receptor distance(SID) was set to 100 cm for the build-up radiation dose measurement of the fluorescent glass dosimeter glass element(GD-352M). Radiation doses and saturation rates were measured over time according to irradiation time, with the tube voltage (30, 60, 90 kVp) and tube current (50, 100 mAs) Repeatability test was repeated ten times to measure the coefficient of variation. The radiation dose increased from 0.182 mGy to 12.902 mGy and the saturation rate increased from 58.3% with increasing exposure condition and time. The coefficient of variation of the glass elements of the fluorescent glass dosimeter was ranged from 0.2 to 0.77 according to the X - ray exposure conditions. X - ray exposure showed that the radiation dose and saturation rate were increased with buildup characteristics, and degeneration of glass elements was not observed. The reproducibility of the variation coefficient of the radiation generator was included within the error range and the reproducibility of the radiation dose was excellent.

Reduction of Radiation Exposure by Modifying Imaging Manner and Fluoroscopic Settings during Percutaneous Pedicle Screw Insertion

  • Kim, Hyun Jun;Park, Eun Soo;Lee, Sang Ho;Park, Chan Hong;Chung, Seok Won
    • Journal of Korean Neurosurgical Society
    • /
    • v.64 no.6
    • /
    • pp.933-943
    • /
    • 2021
  • Objective : Percutaneous pedicle screw (PPS) fixation is a needle based procedure that requires fluoroscopic image guidance. Consequently, radiation exposure is inevitable for patients, surgeons, and operation room staff. We hypothesize that reducing the production of radiation emission will result in reduced radiation exposure for everyone in the operation room. Research was performed to evaluate reduction of radiation exposure by modifying imaging manner and mode of radiation source. Methods : A total of 170 patients (680 screws) who underwent fusion surgery with PPS fixation from September 2019 to March 2020 were analyzed in this study. Personal dosimeters (Polimaster Ltd.) were worn at the collar outside a lead apron to measure radiation exposure. Patients were assigned to four groups based on imaging manner of fluoroscopy and radiation modification (pulse mode with reduced dose) : continuous use without radiation modification (group 1, n=34), intermittent use without radiation modification (group 2, n=54), continuous use with radiation modification (group 3, n=26), and intermittent use with radiation modification (group 4, n=56). Post hoc Tukey Honest significant difference test was used for individual comparisons of radiation exposure/screw and fluoroscopic time/screw. Results : The average radiation exposure/screw was 71.45±45.75 µSv/screw for group 1, 18.77±11.51 µSv/screw for group 2, 19.58±7.00 µSv/screw for group 3, and 4.26±2.89 µSv/screw for group 4. By changing imaging manner from continuous multiple shot to intermittent single shot, 73.7% radiation reduction was achieved in the no radiation modification groups (groups 1, 2), and 78.2% radiation reduction was achieved in the radiation modification groups (groups 3, 4). Radiation source modification from continuous mode with standard dose to pulse mode with reduced dose resulted in 72.6% radiation reduction in continuous imaging groups (groups 1, 3) and 77.3% radiation reduction in intermittent imaging groups (groups 2, 4). The average radiation exposure/screw was reduced 94.1% by changing imaging manner and modifying radiation source from continuous imaging with standard fluoroscopy setting (group 1) to intermittent imaging with modified fluoroscopy setting (group 4). A total of 680 screws were reviewed postoperatively, and 99.3% (675) were evaluated as pedicle breach grade 0 (<2 mm). Conclusion : The average radiation exposure/screw for a spinal surgeon can be reduced 94.1% by changing imaging manner and modifying radiation source from real-time imaging with standard dose to intermittent imaging with modified dose. These modifications can be instantly applied to any procedure using fluoroscopic guidance and may reduce the overall radiation exposure of spine surgeons.

Planning of Optimal Work Path for Minimizing Exposure Dose During Radiation Work in Radwaste Storage (방사성 폐기물 저장시설에서의 방사선 작업 중 피폭선량 최소화를 위한 최적 작업경로 계획)

  • Park, Won-Man;Kim, Kyung-Soo;Whang, Joo-Ho
    • Journal of Radiation Protection and Research
    • /
    • v.30 no.1
    • /
    • pp.17-25
    • /
    • 2005
  • Since the safety of nuclear power plant has been becoming a big social issue the exposure dose of radiation for workers has been one of the important factors concerning the safety problem. The existing calculation methods of radiation dose used in the planning of radiation work assume that dose rate does not depend on the location within a work space thus the variation of exposure dose by different work path is not considered. In this study, a modified numerical method was presented to estimate the exposure dose during radiation work in radwaste storage considering the effects of the distance between a worker and sources. And a new numerical algorithm was suggested to search the optimal work path minimizing the exposure dose in pre-defined work space with given radiation sources. Finally, a virtual work simulation program was developed to visualize the exposure dose of radiation doting radiation works in radwaste storage and provide the capability of simulation for work planning. As a numerical example, a test radiation work was simulated under given space and two radiation sources, and the suggested optimal work path was compared with three predefined work paths. The optimal work path obtained in the study could reduce the exposure dose for the given test work. Based on the results, tile developed numerical method and simulation program could be useful tools in the planning of radiation work.

The Effects of Fractionated Radiation on Chromosome Aberrations and Sister Chromatid Exchanges in Rat Lymphocyte Culture (방사선의 반복조사가 랫드 림프구의 염색체이상과 자매염색분체교환에 미치는 영향)

  • 이명구;이광성;조영채
    • Journal of Environmental Health Sciences
    • /
    • v.24 no.2
    • /
    • pp.88-99
    • /
    • 1998
  • This study was undertaken to find out the bio-effects due to be a radiation fractionated exposure. The experimental animals were divided into the control group and the radiation exposure groups of 20cGy, 40cGy and 80cGy with 220 male Sprague-Dawley rats at 6 weeks old. The radiation exposure groups were fractionated exposed from each 20cGy, 40cGy and 80cGy for every 5 days. The chromosome aberrations, the frequency of SCE, the changes of body weight, hematological values and enzyme activities were investigated for the fractionating exposure times and the time after fractionated exposure. The results were summarized as follows 1. The body weight of the radiation exposure groups were significantly decreased compared with control group according to the increasing fractionated exposure times, and it was the lowest values at the immediately after the end of the fractionating exposed, but it was recovered with the level of control group at 3rd weeks gradually increased 1st week after fractionated exposure. 2. The values of WBC, RBC, Hb and Hct in the radiation exposure groups were significantly decreased than those the control group, but the values of GOT, GPT, ALP, and LDH in the radiation exposure groups were significantly increased than those of the control group. 3. The frequency of chromosomal aberration were increased according to the increasing fractionated exposure dose, and it showed the highest at 5th days after fractionated exposed. The types of chromosomal aberration were occurred such as a numerical abnormality, deletion, break and duplication, it was not recovered immediately and maintained high frequency than the control group. 4. The frequency of SCE were significantly increased according to the increasing fractionated exposure dose in 20cGy, 40cGy and 80cGy groups. But it was recovered the level of control group at 7th days after fractionated exposure. According to the above results, this study could confirm that the frequency of chromosomal aberration and SCE were increased with fractionated exposure dose, the other hand, the changes of body weight, hematological values and enzyme activity values were significantly affected according to the increasing fractionated exposure dose.

  • PDF

Patient Radiation Exposure Dose in Computed Tomography (전산화단층촬영장치에서 환자피폭선량)

  • Cho, Pyong Kon
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.2
    • /
    • pp.109-115
    • /
    • 2015
  • In case of a CT examinations, there is a difference in the distribution of radiation dose from that of general X-ray equipments, and it has been known to cause a great radiation exposure during the examinations. However, owing to its high reliability on the accuracy of a examinations result, its use has increased continuously. In consideration of such a circumstance, the CT equipment, radiation dose during CT examinations, diagnostic reference level, and solutions to reduce radiation dose were mentioned on the basis of previously reported data.

Conclusions and Suggestions on Low-Dose and Low-Dose Rate Radiation Risk Estimation Methodology

  • Sakai, Kazuo;Yamada, Yutaka;Yoshida, Kazuo;Yoshinaga, Shinji;Sato, Kaoru;Ogata, Hiromitsu;Iwasaki, Toshiyasu;Kudo, Shin'ichi;Asada, Yasuki;Kawaguchi, Isao;Haeno, Hiroshi;Sasaki, Michiya
    • Journal of Radiation Protection and Research
    • /
    • v.46 no.1
    • /
    • pp.14-23
    • /
    • 2021
  • Background: For radiological protection and control, the International Commission on Radiological Protection (ICRP) provides the nominal risk coefficients related to radiation exposure, which can be extrapolated using the excess relative risk and excess absolute risk obtained from the Life Span Study of atomic bomb survivors in Hiroshima and Nagasaki with the dose and dose-rate effectiveness factor (DDREF). Materials and Methods: Since it is impossible to directly estimate the radiation risk at doses less than approximately 100 mSv only from epidemiological knowledge and data, support from radiation biology is absolutely imperative, and thus, several national and international bodies have advocated the importance of bridging knowledge between biology and epidemiology. Because of the accident at the Tokyo Electric Power Company (TEPCO)'s Fukushima Daiichi Nuclear Power Station in 2011, the exposure of the public to radiation has become a major concern and it was considered that the estimation of radiation risk should be more realistic to cope with the prevailing radiation exposure situation. Results and Discussion: To discuss the issues from wide aspects related to radiological protection, and to realize bridging knowledge between biology and epidemiology, we have established a research group to develop low-dose and low-dose-rate radiation risk estimation methodology, with the permission of the Japan Health Physics Society. Conclusion: The aim of the research group was to clarify the current situation and issues related to the risk estimation of low-dose and low-dose-rate radiation exposure from the viewpoints of different research fields, such as epidemiology, biology, modeling, and dosimetry, to identify a future strategy and roadmap to elucidate a more realistic estimation of risk against low-dose and low-dose-rate radiation exposure.

Comparative Analysis of Cosmic Radiation Exposure Dose Due to the Russian Detour Route

  • Hee-Bok Ahn;Jaeyoung Kwak;Junga Hwang
    • Journal of Astronomy and Space Sciences
    • /
    • v.40 no.2
    • /
    • pp.59-66
    • /
    • 2023
  • Since the World Health Organization (WHO) officially announced a global pandemic on March 12, 2020, the aviation industry in the world has been experiencing difficulties for a long time. Meanwhile, the Ukraine war broke out in February, and from March 15, domestic airlines must operate air routes bypassing Russian airspace despite the longer flight time. Therefore, as the flight time increases, the cosmic radiation exposure dose of the crew members is also expected to increase. Here we compare the radiation exposure dose between the route doses for the eastern United States and Europe before and after the detour route usage. Through the comparison analysis, we tried to understand how cosmic radiation changes depending on the flight time and the latitude and which one contributes more. We expect that this study can be used for the policy update for the safety management of cosmic radiation for aircrews in Korea.

Development of Exposure Level Prediction Program in Radioactive Waste Work (방사성 폐기물 작업 중의 피폭서량 예측 프로그램 개발)

  • Park, Won-Man;Kim, Yoon-Hyuk;Whang, Joo-Ho
    • Journal of the Ergonomics Society of Korea
    • /
    • v.24 no.2
    • /
    • pp.71-77
    • /
    • 2005
  • In spite of the importance of nuclear power as one of major electric energies in Korea, the nuclear safety has become the most serious social issue in the operation of the nuclear power plant. In this paper, a virtual work simulation program was developed to predict exposure dose during radiation work in radwaste storage. The work simulation program was developed. using $Java ^{TM}$applet and VRML-virtual reality modeling language. A numerical algorithm to find the optimal work path which minimize exposure dose during the given work, was developed and exposure dose on the optimal work path was compared with that on the shortest path. Comparing with the shortest path for the given work, the predicted optimal path consumed longer work time by II% but reduced total exposure dose by 46%. The simulation result showed that the exposure dose depended on not only work time, but also the distance between the worker and the radiation source. The developed simulation program could be a useful tool for the planning of radioactive waste work to increase the radiation safety of workers.