• 제목/요약/키워드: radiation exposure dose

검색결과 1,108건 처리시간 0.049초

유방X선촬영 시 피폭선량 감소를 위한 유방촬영용 차폐복의 유용성에 관한 연구 (A Study on the Usefulness of Breast Shielding Apron for Reducing Exposure Dose in Mammography)

  • 구본열;김지원
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제42권2호
    • /
    • pp.99-104
    • /
    • 2019
  • Mammography, conducted every two years, causes cancer due to regular exposure to radiation while reducing rate of death caused by breast cancer. The study evaluates the effect of breast shielding apron made to shield off scattered radiation that occurs to the breast when the opposite side breast is mammogramed. AGD was measured using ACR phantom, composed of 50% mammary glands and 50% fat, and radiation was measured before and after wearing the apron on the breast when the opposite side of the breast is mammogramed. When CC direction mammography was conducted to a breast, the AGD was 1.84 mGy. When CC direction and MLO direction mammography were done to a breast, the average dose detected from the opposite side breast from four directions(top to bottom and medial to lateral) was $140{\mu}Gy$ with maximum dose of $256{\mu}Gy$ at medial side. After putting on the apron, the dose, caused by scattered radiation, was not detected from any of the four directions. Using of breast shielding apron is expected to minimize the radiation exposure by blocking scattered radiation to the breast shielded, when mammography is done to the opposite side breast.

Determination of Scattered Radiation to the Thyroid Gland in Dental Cone Beam Computed Tomography

  • Wilson Hrangkhawl;Winniecia Dkhar;T.S. Madhavan;S. Sharath;R. Vineetha;Yogesh Chhaparwal
    • Journal of Radiation Protection and Research
    • /
    • 제48권1호
    • /
    • pp.15-19
    • /
    • 2023
  • Background: Cone beam computed tomography (CBCT) is a specialized medical equipment and plays a significant role in the diagnosis of oral and maxillofacial diseases and abnormalities; however, it is attributed to risk of exposure of ionizing radiation. The aim of the study was to estimate and determine the amount of scattered radiation dose to the thyroid gland in dental CBCT during maxilla and mandible scan. Materials and Methods: The average scattered radiation dose for i-CAT 17-19 Platinum CBCT (Imaging Sciences International) was measured using a Multi-O-Meter (Unfors Instruments), placed at the patient's neck on the skin surface of the thyroid cartilage, with an exposure parameter of 120 kVp and 37.07 mAs. The surface entrance dose was noted using the Multi-O-Meter, which was placed at the time of the scan at the level of the thyroid gland on the anterior surface of the neck. Results and Discussion: The surface entrance dose to the thyroid from both jaws scans was 191.491±78.486 µGy for 0.25 mm voxel and 26.9 seconds, and 153.670±74.041 µGy from the mandible scan, whereas from the maxilla scan the surface entrance dose was 5.259±10.691 µGy. Conclusion: The surface entrance doses to the thyroid gland from imaging of both the jaws, and also from imaging of the maxilla and mandible alone were within the threshold limit. The surface entrance dose and effective dose in CBCT were dependent on the exposure parameters (kVp and mAs), scan length, and field of view. To further reduce the radiation dose, care should be taken in selecting an appropriate protocol as well as the provision of providing shielding to the thyroid gland.

Point-kernel 방법론 기반 임의 형태 방사선원에 대한 외부피폭 방사선량 평가 알고리즘 개발 (Development of Radiation Dose Assessment Algorithm for Arbitrary Geometry Radiation Source Based on Point-kernel Method)

  • 김주영;김민성;김지우;김광표
    • 방사선산업학회지
    • /
    • 제17권3호
    • /
    • pp.275-282
    • /
    • 2023
  • Workers in nuclear power plants are likely to be exposed to radiation from various geometrical sources. In order to evaluate the exposure level, the point-kernel method can be utilized. In order to perform a dose assessment based on this method, the radiation source should be divided into point sources, and the number of divisions should be set by the evaluator. However, for the general public, there may be difficulties in selecting the appropriate number of divisions and performing an evaluation. Therefore, the purpose of this study is to develop an algorithm for dose assessment for arbitrary shaped sources based on the point-kernel method. For this purpose, the point-kernel method was analyzed and the main factors for the dose assessment were selected. Subsequently, based on the analyzed methodology, a dose assessment algorithm for arbitrary shaped sources was developed. Lastly, the developed algorithm was verified using Microshield. The dose assessment procedure of the developed algorithm consisted of 1) boundary space setting step, 2) source grid division step, 3) the set of point sources generation step, and 4) dose assessment step. In the boundary space setting step, the boundaries of the space occupied by the sources are set. In the grid division step, the boundary space is divided into several grids. In the set of point sources generation step, the coordinates of the point sources are set by considering the proportion of sources occupying each grid. Finally, in the dose assessment step, the results of the dose assessments for each point source are summed up to derive the dose rate. In order to verify the developed algorithm, the exposure scenario was established based on the standard exposure scenario presented by the American National Standards Institute. The results of the evaluation with the developed algorithm and Microshield were compare. The results of the evaluation with the developed algorithm showed a range of 1.99×10-1~9.74×10-1 μSv hr-1, depending on the distance and the error between the results of the developed algorithm and Microshield was about 0.48~6.93%. The error was attributed to the difference in the number of point sources and point source distribution between the developed algorithm and the Microshield. The results of this study can be utilized for external exposure radiation dose assessments based on the point-kernel method.

두부 CT 검사 시 테이블 높이에 따른 선량과 화질에 관한 연구 (A Study on Radiation Dose and Image Quality according to CT Table Height in Brain CT)

  • 김기원;오주영;민정환;이상선;이영봉;임경환;이윤
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제46권2호
    • /
    • pp.99-106
    • /
    • 2023
  • The height of the table should be considered important during computed tomography (CT) examination, but according to previous studies, not all radiology technologists set the table at the patient's center at the examination, which affects the exposure dose and image quality received by the patient. Therefore, this study intends to study the image quality exposure dose according to the height of the table to realize the optimal image quality and dose during the brain CT scan. The head phantom images were acquired using Philips Brilliance iCT 256. When the image was acquired, the table height was adjusted to 815, 865, 915, 965, 1015, and 1030 mm, respectively, and each scan was performed 3 times for each height. For the exposure dose measurement, optically stimulated luminescence dosimeter (OSLD) was attached to the front, side, eye, and thyroid gland of the head phantom. In the signal to noise ratio (SNR) measurement result, The SNR values for each table height were all lower than 915 mm. As a result of exposure dose, the exposure dose on each area increased as the table height decreased. The height of the table has a close relationship with the patient's radiation exposure dose in the CT scan.

Evaluation of Exposure Dose and Working Hours for Near Surface Disposal Facility

  • Yeseul Cho;Hoseog Dho;Hyungoo Kang;Chunhyung Cho
    • 방사성폐기물학회지
    • /
    • 제20권4호
    • /
    • pp.511-521
    • /
    • 2022
  • Decommissioning of nuclear power plants generates a large amount of radioactive waste in a short period. Moreover, Radioactive waste has various forms including a large volumes of metal, concrete, and solid waste. The disposal of decommissioning waste using 200 L drums is inefficient in terms of economics, work efficiency, and radiation safety. Therefore, The Korea Radioactive Waste Agency is developing large containers for the packaging, transportation, and disposal of decommissioning waste. Assessing disposability considering the characteristics of the radioactive waste and facility, convenience of operation, and safety of workers is necessary. In this study, the exposure dose rate of workers during the disposal of new containers was evaluated using Monte Carlo N-Particle Transport code. Six normal and four abnormal scenarios were derived for the assessment of the dose rate in a near surface disposal facility operation. The results showed that the calculated dose rates in all normal scenarios were lower than the direct exposure dose limitation of workers in the safety analysis report. In abnormal scenarios, the work hours with dose rates below 20 mSv·y-1 were calculated. The results of this study will be useful in establishing the optimal radiation work conditions.

Induction of SOS Genes by a Low Dose of Gamma Radiation, 10 Gy, in Salmonella enterica Serovar Typhimurium

  • Lim, Sangyong;Joe, Minho;Seo, Hoseong;Kim, Dongho
    • 방사선산업학회지
    • /
    • 제7권2_3호
    • /
    • pp.109-113
    • /
    • 2013
  • In a previous study, a relatively high dose of gamma radiation (1 kGy) did not fully induce typical SOS genes such as sulA, recA, recN, and din in Salmonella Typhimurium (S. Typhimurium) (Lim et al. 2008, Gene expression profiles following high-dose exposure to gamma radiation in Salmonella enterica serovar Typhimuium. J. Radiat. Ind. 3:111-119). In this study, we examined changes in the transcriptional repertoire of S. Typhimurium after a dose of 10 Gy using DNA microarrays. It was found that more than half (~65%) of the 26 up-regulated genes belong to the SOS regulon: ten genes are typical SOS genes, and seven genes are Salmonella prophage genes, which are known to be activated by LexA cleavage. Among 29 down-regulated genes, the function of five genes with the most decreased expression is associated with carbohydrate transport and energy production. This suggests that upon exposure to gamma radiation cells may cease growing by reducing the metabolic activity, and repair DNA damage using a DNA repair system such as the SOS response system. The difference in expression of the SOS genes between a high (1 kGy) and low (10 Gy) dose of radiation shows the possibility that cells may opt for one of multiple regulatory circuits in response to the specific gamma radiation dose.

저선량 방사선 노출에 대한 생물학적 지표로서 Glycophorin A 변이발현율 측정의 유용성 평가 (Assessment of the Glycophorin A Mutant Assay as a Biologic Marker for Low Dose Radiation Exposure)

  • 하미나;유근영;하성환;김동현;조수헌
    • Journal of Preventive Medicine and Public Health
    • /
    • 제33권2호
    • /
    • pp.165-173
    • /
    • 2000
  • Objectives : To assess the availability of the glycophorin A (GPA) assay to detect the biological effect of ionizing radiation in workers exposed to low-doses of radiation. Methods : Information on confounding factors, such as age and cigarette smoking was obtained on 144 nuclear power plant workers and 32 hospital workers, by a self-administered questionnaire. Information on physical exposure levels was obtained from the registries of radiation exposure monitoring and control at each facility. The GPA mutant assay was performed using the BR6 method with modification by using a FACScan flow cytometer. Results : As confounders, age and cigarette smoking habits showed increasing trends with GPA variants, but these were of no statistical significance. Hospital workers showed a higher frequency of the GPA variant than nuclear power plant workers in terms of the NO variant. Significant dose-response relationships were obtained from in simple and multiple linear regression models. The slope of the regression equation for nuclear power plant workers was much smaller than that of hospital workers. These findings suggest that there may be apparent dose-rate effects. Conclusion : In population exposed to chronic low-dose radiation, the GPA assay has a potential to be used as an effective biologic marker for assessing the bone marrow cumulative exposure dose.

  • PDF

실리콘 핀 포토다이오드를 이용한 능동형 방사선 피폭 전자선량계의 구현 (Implementation of Electronic Personal Dosimeter Using Silicon PIN Photodiode)

  • 이운근;백광렬;권석근
    • 제어로봇시스템학회논문지
    • /
    • 제9권4호
    • /
    • pp.296-303
    • /
    • 2003
  • A personal portable type electronic dosimeter using silicon PIN photodiode and small GM tube is recently attracting much attention due to its advantages such as an immediate indication function of dose and dose rate, alerting function, and efficient management of radiation exposure history and dose data. We designed and manufactured a semiconductor radiation detector aimed to directly measure X-ray and v-ray irradiated in silicon PIN photodiode, without using high-priced scintillation materials. Using this semiconductor radiation detector, we developed an active electronic dosimeter, which measures the exposure dose using pulse counting method. In this case, it has a shortcoming of over-evaluating the dose that shows the difference between the dose measured with electronic dosimeter and the dose exposed to the human body in a low energy area. We proposed an energy compensation filter and developed a dose conversion algorithm to make both doses indicated on the detector and exposed to the human body proportional to each other, thus enabling a high-precision dose measurement. In order to prove its reliability in conducting personal dose measurement, crucial for protecting against radiation, the implemented electronic dosimeter was evaluated to successfully meet the IEC's criteria, as the KAERI (Korea Atomic Energy Research Institute) conducted test on dose indication accuracy, and linearity, energy and angular dependences.

X-선 발생장치 정류방식에 따른 출력특성에 관한 연구

  • 나길주;백수웅;양현훈;박계춘
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 추계학술대회 논문집
    • /
    • pp.126-126
    • /
    • 2009
  • X-ray high-voltage generator is the most important part that can decide the radiation exposure dose affecting a patient or operator according to the characteristic. If decrease of X-ray radiation exposure dose and output characteristic of high-voltage generator is unstable, a patient or operator must be exposed to more radiation. This study measures and analyzes the exposure dose reproducibility and output characteristic according to a change of tube current on the various rectification methods of diagnostic X-ray equipment. It can find that quality bastardize and output is increased if voltage of X-ray tube is increased. Exposure dose reproducibility according to output of X-ray equipment is extremely excellent in inverter type, and is stable in order of following three-phase, a single-phase and condenser method. This study can find that the reply incidence of high-voltage generator is generated due to difference in rectification method, noise occurs in X-ray due to that, quality of an image is decreased due to that, and medical diagnosis can be failed due to that.

  • PDF

C-Arm 장비의 사용 시 시술자의 피폭선량 저 감화 방법 연구 (Study on the Method for Reducing the Operator's Exposure Dose From a C-Arm System)

  • 김기식;송종남;김승옥
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제39권4호
    • /
    • pp.493-499
    • /
    • 2016
  • C-arm장비의 사용 시 시술자의 산란선에 의한 피폭선량을 확인하여 적절하고 효율적인 피폭선량 저 감화 방법을 알아보기 위해 본 연구를 진행하였다. Over Tube 방식에 비해 피폭선량이 적다는 Under Tube 방식의 C-arm 장비를 활용하여 연구한 결과 차폐도구가 두꺼울수록 시술자의 피폭선량은 감소하였고, 중심선에서 멀어질수록 피폭선량이 감소하였고, 조사시간이 길어질수록 피폭선량이 증가하였고, 세 곳의 선량계 부착위치 중 생식선에서 가장 많은 피폭선량이 측정되었고 흉부, 갑상선 순이었다. 그러나 실제 시술 중 피폭선량을 줄이기 위해 거리를 무한정 늘릴 수 없고, 조사시간을 무한정 단축시킬 수 없기 때문에 인위적으로 조절 가능한 차폐 두께를 달리하는 방법으로 시술자의 피폭선량을 감소시킬 수 있었다. C-arm장비를 사용할 경우 시술 중 불편하다는 이유로 방사선 차폐에 소홀히 하고 근접시술이 이루어지기 때문에 피폭량은 증가할 수밖에 없다. 이에 C-Arm장비의 특성상 조정실을 구비할 수 없으므로 Apron 등의 방사선 차폐도구의 적정두께 사용 등으로 시술 중 발생되는 방사선에 의한 시술자의 피폭선량을 경감시켜야 할 것으로 사료된다.