• 제목/요약/키워드: radiation attenuation

검색결과 265건 처리시간 0.02초

A New Approach on the Scattering of Electromagnetic Radiation for Spherical Raindrop by the Invariant Imbedding Method

  • 이경동;이동훈;김기홍
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2003년도 한국우주과학회보 제12권2호
    • /
    • pp.35-35
    • /
    • 2003
  • In satellite communication, attenuation, scattering, and depolarization of relatively high frequency waves such as millimeter waves are strongly influenced by rain. In order to study the rain attenuation, we introduce a new theoretical method, which enables us to obtain the reflection and transmission coefficients in arbitrary medium. We adopt this method to examine how the electromagnetic radiation is affected by homogeneous spherical raindrops. It is assumed that the raindrop shape is spherical and linearly locate in one direction. For the radiation of wave in raindrops, we consider the effective permittivity, in which the raindrop is assumed to be spherical. By adopting the invariant imbedding approach, the 1st order differential equations are derived for the reflection and transmission coefficients. We investigate the transmission and reflection of waves for various incident angles when the spherical raindrops are assumed to have random sizes.

  • PDF

6 MV X-선 조사시 중두개와에서의 선량감쇠 (Dose Attenuation in the Mid-Cranial Fossa with 6 MV Photon Beam Irradiations)

  • 박정호;최태진;김옥배
    • Radiation Oncology Journal
    • /
    • 제8권1호
    • /
    • pp.125-131
    • /
    • 1990
  • 방사선조사시 선량분포에 영향을 미치는 여러가지 요소들 중에서 조직불균등성은 선량을 상당히 변화시킨다. 특히, 중뇌강은 여러골조직으로 구성되어 있어 조직 불균등성에 따른 상당한 선랑감쇠가 예상된다. 6 MV X-선 조사후 중두개와에서의 선량분포측정은 LiF TLD 소자를 이용하였으며 같은 측정장소에서, 계산에 의한 예상선량과 실측선량의 비교를 시도하였다. 계산에 의하면, 골조직 1 cm당 예상선량감쇠는 $3.74\%$를 나타내었다. 한편, 골조직을 고려한 예상선량과 실측선량의 차이는 매우 적었으며 $\pm0.21\%$의 오차범위내에서 일치됨을 나타내었다.

  • PDF

Energy Spectrum Measurement of High Power and High Energy (6 and 9 MeV) Pulsed X-ray Source for Industrial Use

  • Takagi, Hiroyuki;Murata, Isao
    • Journal of Radiation Protection and Research
    • /
    • 제41권2호
    • /
    • pp.93-99
    • /
    • 2016
  • Background: Industrial X-ray CT system is normally applied to non-destructive testing (NDT) for industrial product made from metal. Furthermore there are some special CT systems, which have an ability to inspect nuclear fuel assemblies or rocket motors, using high power and high energy (more than 6 MeV) pulsed X-ray source. In these case, pulsed X-ray are produced by the electron linear accelerator, and a huge number of photons with a wide energy spectrum are produced within a very short period. Consequently, it is difficult to measure the X-ray energy spectrum for such accelerator-based X-ray sources using simple spectrometry. Due to this difficulty, unexpected images and artifacts which lead to incorrect density information and dimensions of specimens cannot be avoided in CT images. For getting highly precise CT images, it is important to know the precise energy spectrum of emitted X-rays. Materials and Methods: In order to realize it we investigated a new approach utilizing the Bayesian estimation method combined with an attenuation curve measurement using step shaped attenuation material. This method was validated by precise measurement of energy spectrum from a 1 MeV electron accelerator. In this study, to extend the applicable X-ray energy range we tried to measure energy spectra of X-ray sources from 6 and 9 MeV linear accelerators by using the recently developed method. Results and Discussion: In this study, an attenuation curves are measured by using a step-shaped attenuation materials of aluminum and steel individually, and the each X-ray spectrum is reconstructed from the measured attenuation curve by the spectrum type Bayesian estimation method. Conclusion: The obtained result shows good agreement with simulated spectra, and the presently developed technique is adaptable for high energy X-ray source more than 6 MeV.

Effect of Heat Treatment on Radiation Shielding Properties of Concretes

  • Singh, Vishwanath P.;Tekin, Huseyin O.;Badiger, Nagappa M.;Manici, Tubga;Altunsoy, Elif E.
    • Journal of Radiation Protection and Research
    • /
    • 제43권1호
    • /
    • pp.20-28
    • /
    • 2018
  • Background: Heat energy produced in nuclear reactors and nuclear fuel cycle facilities interactions modifies the physical properties of the shielding materials containing water content. Therefore, in the present paper, effect of the heat on shielding effectiveness of the concretes is investigated for gamma and neutron. The mass attenuation coefficients, effective atomic numbers, fast neutron removal cross-section and exposure buildup factors. Materials and Methods: The mass attenuation coefficients, effective atomic numbers, fast neutron removal cross-section and exposure buildup factors of ordinary and heavy concretes were investigated using NIST data of XCOM program and Geometric Progression method. Results and Discussion: The improvement in shielding effectiveness for photon and reduction in fast neutron for ordinary concrete was observed. The change in the neutron shielding effectiveness was insignificant. Conclusion: The present investigation on interaction of gamma and neutron radiation would be very useful for assessment of shielding efficiency of the concrete used in high temperature applications such as reactors.

Investigation of gamma radiation shielding capability of two clay materials

  • Olukotun, S.F.;Gbenu, S.T.;Ibitoye, F.I.;Oladejo, O.F.;Shittu, H.O.;Fasasi, M.K.;Balogun, F.A.
    • Nuclear Engineering and Technology
    • /
    • 제50권6호
    • /
    • pp.957-962
    • /
    • 2018
  • The gamma radiation shielding capability (GRSC) of two clay-materials (Ball clay and Kaolin)of Southwestern Nigeria ($7.49^{\circ}N$, $4.55^{\circ}E$) have been investigated by determine theoretically and experimentally the mass attenuation coefficient, ${\mu}/{\rho}(cm^2g^{-1})$ of the clay materials at photon energies of 609.31, 1120.29, 1173.20, 1238.11, 1332.50 and 1764.49 keV emitted from $^{214}Bi$ ore and $^{60}Co$ point source. The mass attenuation coefficients were theoretically evaluated using the elemental compositions of the clay-materials obtained by Particle-Induced X-ray Emission (PIXE) elemental analysis technique as input data for WinXCom software. While gamma ray transmission experiment using Hyper Pure Germanium (HPGe) spectrometer detector to experimentally determine the mass attenuation coefficients, ${\mu}/{\rho}(cm^2g^{-1})$ of the samples. The experimental results are in good agreement with the theoretical calculations of WinXCom software. Linear attenuation coefficient (${\mu}$), half value layer (HVL) and mean free path (MFP) were also evaluated using the obtained ${\mu}/{\rho}$ values for the investigated samples. The GRSC of the selected clay-materials have been compared with other studied shielding materials. The cognizance of various factors such as availability, thermo-chemical stability and water retaining ability by the clay-samples can be analyzed for efficacy of the material for their GRSC.

Evaluation of Images Depending on an Attenuation Correction in a Brain PET/CT Scan

  • Choi, Eun-Jin;Jeong, Mon-Taeg;Dong, Kyung-Rae;Kwak, Jong-Gil;Choi, Ji-Won;Ryu, Jae-Kwang
    • 방사선산업학회지
    • /
    • 제12권4호
    • /
    • pp.267-276
    • /
    • 2018
  • A Hoffman 3D Brain Phantom was used to evaluate two PET/CT scanners, BIO_40 and D_690, according to the radiation dose of CT (low, medium and high) at a fixed kilo-voltage-peak (kVp) with the tube current(mA) varied in 17~20 stages(Bio_40 PET/CT scanner: the tube voltage was fixed to 120 kVp, the effective tube current(mAs) was increased from 33 mAs to 190 mAs in 10 mAs increments, D_690 PET/CT scanner: the tube voltage was fixed to 140 kVp, tube current(mA) was increased from 10 mAs to 200 mAs in 10 mAs increments). After obtaining the PET image, an attenuation correction was conducted based on the attenuation map, which led to an analysis of the difference in the image. First, the ratio of white to gray matter for each scanner was examined by comparing the coefficient of variation (CV) depending on the average ratio. In addition, a blind test was carried out to evaluate the image. According to the study results, the BIO_40 and D_690 scanners showed a <1% change in CV value due to the tube current conversion. The change in the coefficients of white and gray matter showed that the Z value was negative for both scanners, indicating that the coefficient of gray matter was higher than that of white matter. Moreover, no difference was observed when the images were compared in a blind test.

IRIS형 방사선검출기 콜리메이터 제작 및 MCNP 코드를 이용한 성능평가 (Development of the IRIS Collimator for the Portable Radiation Detector and Its Performance Evaluation Using the MCNP Code)

  • 지영용;정근호;이완로;최상도;김창종;강문자;박상태
    • 방사성폐기물학회지
    • /
    • 제13권1호
    • /
    • pp.55-61
    • /
    • 2015
  • 방사선검출기를 이용한 고방사성물질의 측정이나 방사선사고 등의 신속한 대응을 위하여 주위의 선량률 준위에 따라 크기별로 여러 종류의 콜리메이터들을 구비해야 하며, 이는 무거운 콜리메이터의 특성상 효율적인 현장 측정에 심각한 장애가 될 수 있다. 본 연구에서는 콜리메이터의 모양을 카메라의 렌즈 조리개 형식으로 제작하여 사용자가 직접 카메라 렌즈를 돌려 초점을 맞추듯이 콜리메이터의 내경을 조절하고 방사선의 감쇄율을 쉽게 알아볼 수 있도록 IRIS형 콜리메이터를 제작하였다. 먼저, 콜리메이터를 위상을 달리한 2 중의 텅스텐 셔터 구조로 제작하여 기계적 공차에 의한 방사선의 침투를 차단하고자 하였다. 그리고 셔터의 재질별로 콜리메이터 내경에 따른 방사선 감쇄율을 MCNP 코드를 이용하여 계산함으로써 이론적인 성능평가를 수행하였다. 계산된 내경의 크기별 감쇄율을 콜리메이터 외부 눈금링에 표시함으로써, 카메라 렌즈에 표시된 배율과 같은 방법으로 사용자가 해당 표시지점으로 콜리메이터 내경을 조절하였을 때, 방사선의 세기가 얼마만 큼 감소되는지 쉽게 알아볼 수 있도록 구현하였다. 끝으로 개발된 IRIS형 콜리메이터를 장착한 소형 방사선검출기를 현장 측정에 활용할 경우, 콜리메이터의 교체 없이 주위 방사선의 세기에 따라 콜리메이터 내경을 적절한 크기로 신속히 교체가 가능하며, 방사선 세기의 감쇄 정도를 쉽게 알아보게 함으로써 신속하고 정확한 대처가 가능할 것으로 판단된다.

방사선 측정관련 보정인자 계산 (Calculations of Radiation Measurement-Related Correction Factors)

  • 신희성;노성기;김호동
    • Journal of Radiation Protection and Research
    • /
    • 제28권1호
    • /
    • pp.19-24
    • /
    • 2003
  • 해석적인 방법과 MCNP 로드를 사용하여 $^{198}Au$ 선원시료에 대한 자체감쇠인자와 검출기의 원반형 Al 덮개에 대한 0.412 MeV 감마선의 투과율을 구하였다. 그 결과, 비교적 반경이 큰 Au 시료를 제외하고 모든 경우에서 해석적인 해가 MCNP 코드의 결과와 잘 일치하는 것으로 나타났다. 이때 두 방법의 최대 편차는 약 9 %로서 Au 시료의 반경이 1.5 mm인 경우에 나타났다. 검출기 Al 덮개의 직경이 7.62 cm인 경우에 대한 0.412 MeV 감마선의 투과율에 대한 해석적인 해는 HCNP 코드의 결과와 표준편차의 범위내에서 잘 일치하는 것으로 나타났다.

Effect of the new photoatomic data library EPDL2017 to mass attenuation coefficient calculation of materials used in the nuclear medicine facilities using EpiXS software

  • Jecong, J.F.M.;Hila, F.C.;Balderas, C.V.;Guillermo, N.R.D.
    • Nuclear Engineering and Technology
    • /
    • 제54권9호
    • /
    • pp.3440-3447
    • /
    • 2022
  • The accuracy of the photoatomic cross-section data is of great importance in the field of radiation protection, particularly in the characterization of radiation shielding materials. With the release of the latest and probably the most accurate photoatomic data library, EPDL2017, the need to re-evaluate all the existing and already established mass attenuation coefficients (MACs) of all radiation shielding materials arises. The MACs of several polymers, alloy-based, glasses, and building materials used in a nuclear medicine facility were investigated using the EPDL2017 library embedded in EpiXS software and were compared to MACs available in the literature. The relative differences between MACEpiXS and MACXCOM were negligible, ranging from 0.02% to 0.36% for most materials. However, for material like a glass comprising of elements Te and La evaluated near their corresponding K-edge energies, the relative differences in MACs increased up to 1.46%. On the other hand, a comparison with MACs calculated based on EPDL97 (a predecessor of EPDL2017) revealed as much as a 6.61% difference. Also, it would seem that the changes in MACs were more evident in the materials composed of high atomic number elements evaluated at x-ray energies compared to materials composed of low atomic number elements evaluated at gamma-ray energies.