• Title/Summary/Keyword: radial tire in motion

Search Result 3, Processing Time 0.016 seconds

CONTACT PRESSURE DISTRIBUTION OF RADIAL TIRE IN MOTION WITH CAMBER ANGLE

  • Kim, Seok-Nam;Kondo, Kyohei;Akasaka, Takashi
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.387-394
    • /
    • 2000
  • Theoretical and experimental study is conducted on the contact pressure distribution of a radial tire in motion under various camber angles. Tire construction is modelled by a spring bedded elastic ring, consisted of sidewall springs and a composite belt ring. The contact area is assumed to be a trapezoidal shape varying with camber angles and weighted load. The basic equation in a quasi-static form is derived for the deformation of a running belt with a constant velocity by the aid of Lagrange-Euler transformation. Galerkin's method and stepwise calculation are applied for solving the basic equation and the mechanical boundary condition along both sides of the contact belt part subjected to shearing forces transmitted from the sidewall spring. Experimental results on the contact pressure, measured by pressure sensors embedded in the surface of the drum tester, correspond well with the calculated ones for the test tire under various camber angles, running velocities and weighted loads. These results indicate that a buckling phenomenon of the contact belt in the widthwise direction occurs due to the effect of camber angle.

  • PDF

Coasting and Post-impact Motion of a Vehicle With Tire Blowout (타이어 펑크 차량의 주행 및 충돌후 거동)

  • Han, Inhwan;Lim, Sanghyun;Park, Jong-Chan;Choi, Jihun
    • Journal of Korean Society of Transportation
    • /
    • v.32 no.5
    • /
    • pp.503-512
    • /
    • 2014
  • In this paper, various tire blow-out force experiment data were collected and analyzed to obtain approximate values of related coefficients such as rolling resistance, self-aligning torque, cornering stiffness, and radial stiffness for the analysis of the motion of vehicles with tire blow-outs. These coefficients related to tire blow-outs were input into a vehicle accident analysis program to simulate and examine the effects of tire blow-outs. Various configurations and velocities of vehicle collisions without tire blow-outs were also used as reference to establish collision events of vehicle collisions with tire blow-outs. For the events, the simulation analysis was performed and collision characteristics were obtained. Consideration of tire blow-outs or damages suggested in this study will greatly contribute to more reliable vehicle accident reconstructions.

A Study on Slow Rolling tire for Prediction of the Tire Forces and Moments (회전하는 타이어의 접지면 동특성 예측에 관한 연구)

  • 김항우;황갑운;조규종
    • Computational Structural Engineering
    • /
    • v.10 no.2
    • /
    • pp.161-169
    • /
    • 1997
  • It is known that tire plays an important role to the dynamic performances of a vehicle such as noise, vibration, ride and handling. Therefore, force and moment measurements have been a part of the traditional tire engineering process. In this paper, a computational analysis technique has been explored. A FE model is made to simulate inflation, vertical load due to the vehicle weight, and the slow rolling of a radial tire. A rigid surface with Coulomb friction is included in the model to simulate the slow rolling contact. The tire slip during the in-plane motion of the rigid surface is calculated. Results are presented for both lateral and vertical loads, as well as straight ahead free rolling. The calculated and measured tire slips are in good correlation. A Study on slow Rolling Tire for perdiction of tire Forces and Moments.

  • PDF